Abstract
Terrain classification is a crucial feature for mobile robots operating across multiple terrains. One way to learn a terrain classifier is to use a stream of labeled proprioceptive data recorded during a terrain traversal. In this paper, we propose a new terrain classifier that combines a feature extraction from a data stream with the long short-term memory (LSTM) network. Features are extracted from the information-sparse data stream by applying a sliding window computing three central moments. The feature sequence is continuously classified by the LSTM network into multiple terrain classes. Furthermore, a modified bagging method is used to deal with a limited and unbalanced training set. In comparison to the previous work on terrain classifiers for a hexapod crawling robot using only servo-drive feedback, the proposed classifier provides continuous classification with the F1 score up to 0.88, and thus provide better results than SVM classifier learned on the same input data.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bartoszyk, S., Kasprzak, P., Belter, D.: Terrain-aware motion planning for a walking robot. In: 2017 11th International Workshop on Robot Motion and Control (RoMoCo), pp. 29–34 (2017)
Best, G., Moghadam, P., Kottege, N., Kleeman, L.: Terrain classification using a hexapod robot. In: Australasian Conference on Robotics and Automation (2013)
Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996)
Frigon, A., Rossignol, S.: Experiments and models of sensorimotor interactions during locomotion. Biol. Cybern. 95(6), 607 (2006)
Gers, F.: Long short-term memory in recurrent neural networks. Unpublished Ph.D. dissertation, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland (2001)
Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9, 1735–1780 (1997)
McDaniel, M.W., Nishihata, T., Brooks, C.A., Salesses, P., Iagnemma, K.: Terrain classification and identification of tree stems using ground based lidar. J. Field Robot. 29(6), 891–910 (2012)
Mrva, J., Faigl, J.: Feature extraction for terrain classification with crawling robots. Inf. Technol. Appl. Theory 1422, 179–185 (2015)
Mrva, J., Faigl, J.: Tactile sensing with servo drives feedback only for blind hexapod walking robot. In: 10th International Workshop on Robot Motion and Control (RoMoCo), pp. 240–245 (2015)
Ojeda, L., Borenstein, J., Witus, G., Karlsen, R.: Terrain characterization and classification with a mobile robot. J. Field Robot. 23(2), 103–122 (2006)
Otsu, K., Ono, M., Fuchs, T.J., Baldwin, I., Kubota, T.: Autonomous terrain classification with co- and self-training approach. IEEE Robot. Autom. Lett. 1(2), 814–819 (2016)
Otte, S., Weiss, C., Scherer, T., Zell, A.: Recurrent neural networks for fast and robust vibration-based ground classification on mobile robots. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 5603–5608 (2016)
Rebula, J.R., Neuhaus, P.D., Bonnlander, B.V., Johnson, M.J., Pratt, J.E.: A controller for the littledog quadruped walking on rough terrain. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 1467–1473 (2007)
Sasaki, Y., et al.: The truth of the F-measure. Teach. Tutor. Mater 1(5), 1–5 (2007)
Tao, D., Tang, X., Li, X., Wu, X.: Asymmetric bagging and random subspace for support vector machines-based relevance feedback in image retrieval. IEEE Trans. Pattern Anal. Mach. Intell. 28(7), 1088–1099 (2006)
Tieleman, T., Hinton, G.: Lecture 6.5-rmsprop: divide the gradient by a running average of its recent magnitude. COURSERA Neural Netw. Mach. Learn. 4(2), 26–31 (2012)
Tóth, T.I., Knops, S., Daun-Gruhn, S.: A neuromechanical model explaining forward and backward stepping in the stick insect. J. Neurophysiol. 107(12), 3267–3280 (2012)
Walas, K., Kanoulas, D., Kryczka, P.: Terrain classification and locomotion parameters adaptation for humanoid robots using force/torque sensing. In: IEEE-RAS 16th International Conference on Humanoid Robots, pp. 133–140 (2016)
Walas, K., Nowicki, M.: Terrain classification using laser range finder. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5003–5009 (2014)
Acknowledgments
The presented work has been supported by the Czech Science Foundation (GAČR) under research project No. 18-18858S. The support of grant No. SGS16/235/OHK3/3T/13 to Rudolf Szadkowski is also gratefully acknowledged. Access to computing and storage facilities owned by parties and projects contributing to the National Grid Infrastructure MetaCentrum provided under the programme “Projects of Large Research, Development, and Innovations Infrastructures” (CESNET LM2015042), is greatly appreciated.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Szadkowski, R.J., Drchal, J., Faigl, J. (2018). Terrain Classification with Crawling Robot Using Long Short-Term Memory Network. In: Kůrková, V., Manolopoulos, Y., Hammer, B., Iliadis, L., Maglogiannis, I. (eds) Artificial Neural Networks and Machine Learning – ICANN 2018. ICANN 2018. Lecture Notes in Computer Science(), vol 11141. Springer, Cham. https://doi.org/10.1007/978-3-030-01424-7_75
Download citation
DOI: https://doi.org/10.1007/978-3-030-01424-7_75
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-01423-0
Online ISBN: 978-3-030-01424-7
eBook Packages: Computer ScienceComputer Science (R0)