[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Extracting Structure of Buildings Using Layout Reconstruction

  • Conference paper
  • First Online:
Intelligent Autonomous Systems 15 (IAS 2018)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 867))

Included in the following conference series:

Abstract

Metric maps, like occupancy grids, are the most common way to represent indoor environments in mobile robotics. Although accurate for navigation and localization, metric maps contain little knowledge about the structure of the buildings they represent. However, if explicitly identified and represented, this knowledge can be exploited in several tasks, such as semantic mapping, place categorization, path planning, human robot communication, and task allocation. The layout of a building is an abstract geometrical representation that models walls as line segments and rooms as polygons. In this paper, we propose a method to reconstruct two-dimensional layouts of buildings starting from the corresponding metric maps. In this way, our method is able to find regularities within a building, abstracting from the possibly noisy information of the metric map. Experimental results show that our approach performs effectively and robustly on different types of input metric maps, characterized by noise, clutter, and partial data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 143.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 179.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://wiki.ros.org/gmapping.

  2. 2.

    http://wiki.ros.org/stage.

References

  1. Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics. The MIT Press, Cambridge (2005)

    MATH  Google Scholar 

  2. Bormann, R., Jordan, F., Li, W., Hampp, J., Hägele, M.: Room segmentation: Survey, implementation, and analysis. In: Proceedings of ICRA, pp. 1019–1026 (2016)

    Google Scholar 

  3. Quattrini Li, A., Cipolleschi, R., Giusto, M., Amigoni, F.: A semantically-informed multirobot system for exploration of relevant areas in search and rescue settings. Auton. Robot. 40(4), 581–597 (2016)

    Article  Google Scholar 

  4. Liu, Z., von Wichert, G.: A generalizable knowledge framework for semantic indoor mapping based on Markov logic networks and data driven MCMC. Futur. Gener. Comput. Syst. 36, 42–56 (2014)

    Article  Google Scholar 

  5. Armeni, I., Sener, O., Zamir, A., Jiang, H., Brilakis, I., Fischer, M., Savarese, S.: 3D semantic parsing of large-scale indoor spaces. In: Proceedings of CVPR, pp. 1534–1543 (2016)

    Google Scholar 

  6. Mura, C., Mattausch, O., Villanueva, A.J., Gobbetti, E., Pajarola, R.: Automatic room detection and reconstruction in cluttered indoor environments with complex room layouts. Comput. Graph. 44, 20–32 (2014)

    Article  Google Scholar 

  7. Thrun, S.: Learning metric-topological maps for indoor mobile robot navigation. Artif. Intell. 99(1), 21–71 (1998)

    Article  Google Scholar 

  8. Brunskill, E., Kollar, T., Roy, N.: Topological mapping using spectral clustering and classification. In: Proceedings of IROS, pp. 3491–3496 (2007)

    Google Scholar 

  9. Mozos, O.: Semantic Labeling of Places with Mobile Robots. Springer Tracts in Advanced Robotics, vol. 61. Springer (2010)

    Google Scholar 

  10. Friedman, S., Pasula, H., Fox, D.: Voronoi random fields: Extracting the topological structure of indoor environments via place labeling. In: Proceedings of IJCAI, pp. 2109–2114 (2007)

    Google Scholar 

  11. Sjoo, K.: Semantic map segmentation using function-based energy maximization. In: Proceedings of ICRA, pp. 4066–4073 (2012)

    Google Scholar 

  12. Buschka, P., Saffiotti, A.: A virtual sensor for room detection. In: Proceedings of IROS, pp. 637–642 (2002)

    Google Scholar 

  13. Capobianco, R., Gemignani, G., Bloisi, D., Nardi, D., Iocchi, L.: Automatic extraction of structural representations of environments. In: Proceedings of IAS-13, pp. 721–733 (2014)

    Google Scholar 

  14. Oesau, S., Lafarge, F., Alliez, P.: Indoor scene reconstruction using feature sensitive primitive extraction and graph-cut. ISPRS J. Photogramm. 90, 68–82 (2014)

    Article  Google Scholar 

  15. Ochmann, S., Vock, R., Wessel, R., Klein, R.: Automatic reconstruction of parametric building models from indoor point clouds. Comput. Graph. 54, 94–103 (2016)

    Article  Google Scholar 

  16. Ambruş, R., Claici, S., Wendt, A.: Automatic room segmentation from unstructured 3-D data of indoor environments. IEEE Robot. Autom. Lett. 2(2), 749–756 (2017)

    Article  Google Scholar 

  17. Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8(6), 679–698 (1986)

    Article  Google Scholar 

  18. Kiryati, N., Eldar, Y., Bruckstein, A.M.: A probabilistic hough transform. Pattern Recogn. 24(4), 303–316 (1991)

    Article  MathSciNet  Google Scholar 

  19. Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Comput. Vision Graph. 30(1), 32–46 (1985)

    Article  Google Scholar 

  20. Comaniciu, D., Meer, P.: Mean shift: a robust approach toward feature space analysis. IEEE Trans. Pattern Anal. Mach. Intell. 24(5), 603–619 (2002)

    Article  Google Scholar 

  21. Ester, M., Kriegel, H.-P., Sander, J., Xu, X., et al.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of KDD, pp. 226–231 (1996)

    Google Scholar 

  22. Yamauchi, B.: A frontier-based approach for autonomous exploration. In: Proceedings of CIRA, pp. 146–151 (1997)

    Google Scholar 

  23. Grisetti, G., Stachniss, C., Burgard, W.: Improved techniques for grid mapping with Rao-Blackwellized particle filters. IEEE Trans. Robot. 23, 34–46 (2007)

    Article  Google Scholar 

  24. Winterhalter, W., Fleckenstein, F., Steder, B., Spinello, L., Burgard, W.: Accurate indoor localization for RGB-D smartphones and tablets given 2D floor plans. In: Proceedings of IROS, pp. 3138–3143 (2015)

    Google Scholar 

  25. Behzadian, B., Agarwal, P., Burgard, W., Tipaldi, G.D.: Monte Carlo localization in hand-drawn maps. In: Proceedings of IROS, pp. 4291–4296 (2015)

    Google Scholar 

  26. Boniardi, F., Behzadian, B., Burgard, W., Tipaldi, G.D.: Robot navigation in hand-drawn sketched maps. In: Proceedings of ECMR, pp. 1–6 (2015)

    Google Scholar 

  27. Howard, A., Roy, N.: The robotics data set repository (Radish) (2003). http://radish.sourceforge.net/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matteo Luperto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Luperto, M., Amigoni, F. (2019). Extracting Structure of Buildings Using Layout Reconstruction. In: Strand, M., Dillmann, R., Menegatti, E., Ghidoni, S. (eds) Intelligent Autonomous Systems 15. IAS 2018. Advances in Intelligent Systems and Computing, vol 867. Springer, Cham. https://doi.org/10.1007/978-3-030-01370-7_51

Download citation

Publish with us

Policies and ethics