Abstract
Metric maps, like occupancy grids, are the most common way to represent indoor environments in mobile robotics. Although accurate for navigation and localization, metric maps contain little knowledge about the structure of the buildings they represent. However, if explicitly identified and represented, this knowledge can be exploited in several tasks, such as semantic mapping, place categorization, path planning, human robot communication, and task allocation. The layout of a building is an abstract geometrical representation that models walls as line segments and rooms as polygons. In this paper, we propose a method to reconstruct two-dimensional layouts of buildings starting from the corresponding metric maps. In this way, our method is able to find regularities within a building, abstracting from the possibly noisy information of the metric map. Experimental results show that our approach performs effectively and robustly on different types of input metric maps, characterized by noise, clutter, and partial data.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics. The MIT Press, Cambridge (2005)
Bormann, R., Jordan, F., Li, W., Hampp, J., Hägele, M.: Room segmentation: Survey, implementation, and analysis. In: Proceedings of ICRA, pp. 1019–1026 (2016)
Quattrini Li, A., Cipolleschi, R., Giusto, M., Amigoni, F.: A semantically-informed multirobot system for exploration of relevant areas in search and rescue settings. Auton. Robot. 40(4), 581–597 (2016)
Liu, Z., von Wichert, G.: A generalizable knowledge framework for semantic indoor mapping based on Markov logic networks and data driven MCMC. Futur. Gener. Comput. Syst. 36, 42–56 (2014)
Armeni, I., Sener, O., Zamir, A., Jiang, H., Brilakis, I., Fischer, M., Savarese, S.: 3D semantic parsing of large-scale indoor spaces. In: Proceedings of CVPR, pp. 1534–1543 (2016)
Mura, C., Mattausch, O., Villanueva, A.J., Gobbetti, E., Pajarola, R.: Automatic room detection and reconstruction in cluttered indoor environments with complex room layouts. Comput. Graph. 44, 20–32 (2014)
Thrun, S.: Learning metric-topological maps for indoor mobile robot navigation. Artif. Intell. 99(1), 21–71 (1998)
Brunskill, E., Kollar, T., Roy, N.: Topological mapping using spectral clustering and classification. In: Proceedings of IROS, pp. 3491–3496 (2007)
Mozos, O.: Semantic Labeling of Places with Mobile Robots. Springer Tracts in Advanced Robotics, vol. 61. Springer (2010)
Friedman, S., Pasula, H., Fox, D.: Voronoi random fields: Extracting the topological structure of indoor environments via place labeling. In: Proceedings of IJCAI, pp. 2109–2114 (2007)
Sjoo, K.: Semantic map segmentation using function-based energy maximization. In: Proceedings of ICRA, pp. 4066–4073 (2012)
Buschka, P., Saffiotti, A.: A virtual sensor for room detection. In: Proceedings of IROS, pp. 637–642 (2002)
Capobianco, R., Gemignani, G., Bloisi, D., Nardi, D., Iocchi, L.: Automatic extraction of structural representations of environments. In: Proceedings of IAS-13, pp. 721–733 (2014)
Oesau, S., Lafarge, F., Alliez, P.: Indoor scene reconstruction using feature sensitive primitive extraction and graph-cut. ISPRS J. Photogramm. 90, 68–82 (2014)
Ochmann, S., Vock, R., Wessel, R., Klein, R.: Automatic reconstruction of parametric building models from indoor point clouds. Comput. Graph. 54, 94–103 (2016)
Ambruş, R., Claici, S., Wendt, A.: Automatic room segmentation from unstructured 3-D data of indoor environments. IEEE Robot. Autom. Lett. 2(2), 749–756 (2017)
Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8(6), 679–698 (1986)
Kiryati, N., Eldar, Y., Bruckstein, A.M.: A probabilistic hough transform. Pattern Recogn. 24(4), 303–316 (1991)
Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Comput. Vision Graph. 30(1), 32–46 (1985)
Comaniciu, D., Meer, P.: Mean shift: a robust approach toward feature space analysis. IEEE Trans. Pattern Anal. Mach. Intell. 24(5), 603–619 (2002)
Ester, M., Kriegel, H.-P., Sander, J., Xu, X., et al.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of KDD, pp. 226–231 (1996)
Yamauchi, B.: A frontier-based approach for autonomous exploration. In: Proceedings of CIRA, pp. 146–151 (1997)
Grisetti, G., Stachniss, C., Burgard, W.: Improved techniques for grid mapping with Rao-Blackwellized particle filters. IEEE Trans. Robot. 23, 34–46 (2007)
Winterhalter, W., Fleckenstein, F., Steder, B., Spinello, L., Burgard, W.: Accurate indoor localization for RGB-D smartphones and tablets given 2D floor plans. In: Proceedings of IROS, pp. 3138–3143 (2015)
Behzadian, B., Agarwal, P., Burgard, W., Tipaldi, G.D.: Monte Carlo localization in hand-drawn maps. In: Proceedings of IROS, pp. 4291–4296 (2015)
Boniardi, F., Behzadian, B., Burgard, W., Tipaldi, G.D.: Robot navigation in hand-drawn sketched maps. In: Proceedings of ECMR, pp. 1–6 (2015)
Howard, A., Roy, N.: The robotics data set repository (Radish) (2003). http://radish.sourceforge.net/
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Luperto, M., Amigoni, F. (2019). Extracting Structure of Buildings Using Layout Reconstruction. In: Strand, M., Dillmann, R., Menegatti, E., Ghidoni, S. (eds) Intelligent Autonomous Systems 15. IAS 2018. Advances in Intelligent Systems and Computing, vol 867. Springer, Cham. https://doi.org/10.1007/978-3-030-01370-7_51
Download citation
DOI: https://doi.org/10.1007/978-3-030-01370-7_51
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-01369-1
Online ISBN: 978-3-030-01370-7
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)