[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Frame Segmentation Networks for Temporal Action Localization

  • Conference paper
  • First Online:
Advances in Multimedia Information Processing – PCM 2018 (PCM 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11165))

Included in the following conference series:

Abstract

Temporal action localization is an important task of computer vision. Though many methods have been proposed, it still remains an open question how to predict the temporal location of action segments precisely. Most state-of-the-art works train action classifiers on video segments pre-determined by action proposal. However, recent work found that a desirable model should move beyond segment-level and make dense predictions at a fine granularity in time to determine precise temporal boundaries. In this paper, we propose a Frame Segmentation Network (FSN) that places a temporal CNN on top of the 2D spatial CNNs. Spatial CNNs are responsible for abstracting semantics in spatial dimension while temporal CNN is responsible for introducing temporal context information and performing dense predictions. The proposed FSN can make dense predictions at frame-level for a video clip using both spatial and temporal context information. FSN is trained in an end-to-end manner, so the model can be optimized in spatial and temporal domain jointly. Experiment results on public dataset show that FSN achieves superior performance in both frame-level action localization and temporal action localization.

This work was supported by the National Basic Research Program of China (973) under Grant No.2014CB340303 and the National Natural Science Foundation of China under Grants U1435219, 61402507 and 61572515.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Caba Heilbron, F., Carlos Niebles, J., Ghanem, B.: Fast temporal activity proposals for efficient detection of human actions in untrimmed videos. In: CVPR (2016)

    Google Scholar 

  2. Carreira, J., Zisserman, A.: Quo vadis, action recognition? a new model and the kinetics dataset. In: CVPR (2017)

    Google Scholar 

  3. Chollet, F., et al.: Keras (2015). https://github.com/fchollet/keras

  4. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: CVPR (2009)

    Google Scholar 

  5. Donahue, J., et al.: Long-term recurrent convolutional networks for visual recognition and description. In: CVPR (2015)

    Google Scholar 

  6. Escorcia, V., Caba Heilbron, F., Niebles, J.C., Ghanem, B.: DAPs: deep action proposals for action understanding. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 768–784. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_47

    Chapter  Google Scholar 

  7. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: CVPR, pp. 580–587 (2014)

    Google Scholar 

  8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)

    Google Scholar 

  9. Idrees, H., et al.: The THUMOS challenge on action recognition for videos “in the wild”. In: CVIU (2017)

    Google Scholar 

  10. Lin, T., Zhao, X., Shou, Z.: Single shot temporal action detection. In: ACM Multimedia (2017)

    Google Scholar 

  11. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: CVPR, pp. 3431–3440 (2015)

    Google Scholar 

  12. Oneata, D., Verbeek, J., Schmid, C.: The LEAR submission at THUMOS (2014)

    Google Scholar 

  13. Richard, A., Gall, J.: Temporal action detection using a statistical language model. In: CVPR (2016)

    Google Scholar 

  14. Shou, Z., Chan, J., Zareian, A., Miyazawa, K., Chang, S.F.: CDC: convolutional-de-convolutional networks for precise temporal action localization in untrimmed videos. In: CVPR (2017)

    Google Scholar 

  15. Shou, Z., Wang, D., Chang, S.F.: Temporal action localization in untrimmed videos via multi-stage CNNs. In: CVPR (2016)

    Google Scholar 

  16. Simonyan, K., Zisserman, A.: Two-stream convolutional networks for action recognition in videos. In: NIPS (2014)

    Google Scholar 

  17. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: ICLR (2015)

    Google Scholar 

  18. Soomro, K., Zamir, A.R., Shah, M.: UCF101: a dataset of 101 human actions classes from videos in the wild. arXiv preprint arXiv:1212.0402 (2012)

  19. Tran, D., Bourdev, L., Fergus, R., Torresani, L., Paluri, M.: Learning spatiotemporal features with 3D convolutional networks. In: ICCV (2015)

    Google Scholar 

  20. Wang, H., Schmid, C.: Action recognition with improved trajectories. In: ICCV (2013)

    Google Scholar 

  21. Wang, L., Qiao, Y., Tang, X.: Action recognition and detection by combining motion and appearance features. In: THUMOS14 Action Recognition Challenge (2014)

    Google Scholar 

  22. Wang, L., et al.: Temporal segment networks: towards good practices for deep action recognition. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 20–36. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_2

    Chapter  Google Scholar 

  23. Yang, K., Qiao, P., Li, D., Lv, S., Dou, Y.: Exploring temporal preservation networks for precise temporal action localization. In: AAAI (2018)

    Google Scholar 

  24. Yeung, S., Russakovsky, O., Jin, N., Andriluka, M., Mori, G., Fei-Fei, L.: Every moment counts: dense detailed labeling of actions in complex videos. arXiv preprint arXiv:1507.05738 (2015)

  25. Yeung, S., Russakovsky, O., Mori, G., Fei-Fei, L.: End-to-end learning of action detection from frame glimpses in videos. In: CVPR (2016)

    Google Scholar 

  26. Yu, F., Koltun, V.: Multi-scale context aggregation by dilated convolutions. arXiv preprint arXiv:1511.07122 (2015)

  27. Yuan, J., Ni, B., Yang, X., Kassim, A.A.: Temporal action localization with pyramid of score distribution features. In: CVPR (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, K. et al. (2018). Frame Segmentation Networks for Temporal Action Localization. In: Hong, R., Cheng, WH., Yamasaki, T., Wang, M., Ngo, CW. (eds) Advances in Multimedia Information Processing – PCM 2018. PCM 2018. Lecture Notes in Computer Science(), vol 11165. Springer, Cham. https://doi.org/10.1007/978-3-030-00767-6_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00767-6_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00766-9

  • Online ISBN: 978-3-030-00767-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics