[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Lytic Region Recognition in Hip Radiograms by Means of Statistical Dominance Transform

  • Conference paper
  • First Online:
Computer Vision and Graphics (ICCVG 2018)

Abstract

Total hip replacement is the accepted treatment procedure of the end stage degeneration of the hip joint. Instability of the prosthesis might be recognized on the radiographic images as area of bone radio - lucency adjacent to the prosthesis pin. However, the very important issue of radiological recognition of periprosthetic lucent areas reflecting the lysis remains a challenge. Small dimensions and fuzzy borders of the lytic areas makes them difficult regions to recognize. Additional factors as high BMI of the patients and/or radiograms taken through a mattress can make the evaluation even more difficult, while small lucent areas might be additionally blurred and of very low contrast. The paper presents a new approach for quantitative recognition of preprothetic lytic areas. We have proposed a multistep algorithm utilizing Statistical Dominance Transform for detection of lytic areas on digital radiograms. Preliminary results are quite promising. It was demonstrated that location and shape of the detected lytic region is in good agreement with assessment by radiologists.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bauer, T.W., Schils, J.: The pathology of total joint arthroplasty. Skelet. Radiol. 28(9), 483–497 (1999). https://doi.org/10.1007/s002560050552

    Article  Google Scholar 

  2. Bielecka, M., Korkosz, M.: Generalized shape language application to detection of a specific type of bone erosion in X-ray images. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2016. LNCS (LNAI), vol. 9692, pp. 531–540. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39378-0_45

    Chapter  Google Scholar 

  3. Bogusiak, K., Kocinski, M., Lutkowski, A., Materka, A., Arkuszewski, P.: Changes in measurements of segner-hasund analysis in patients with mandibular prognathism after orthognathic surgery. Dent. Med. Probl 53(1), 13–21 (2016)

    Article  Google Scholar 

  4. Chrzanowski, L., Drozdz, J., Strzelecki, M., Krzeminska-Pakula, M., Jedrzejewski, K., Kasprzak, J.: Application of neural networks for the analysis of histological and ultrasonic aortic wall appearance-an invitro tissue characterization study. Ultrasound Med. Biol. 34(2008), 103–113 (2008)

    Article  Google Scholar 

  5. Claus, A.M., Totterman, S.M., Sychterz, C.J., Tamez-Peña, J.G., Looney, R.J., Engh Sr., C.A.: Computed tomography to assess pelvic lysis after total hip replacement. Clin. Orthop. Relat. Res. 422, 167–174 (2004)

    Article  Google Scholar 

  6. Kropidłowski, K., Kociołek, M., Strzelecki, M., Czubiński, D.: Model based approach for melanoma segmentation. In: Chmielewski, L.J., Kozera, R., Shin, B.-S., Wojciechowski, K. (eds.) ICCVG 2014. LNCS, vol. 8671, pp. 347–355. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11331-9_42

    Chapter  Google Scholar 

  7. Larroza, A., Bodí, V., Moratal, D.: Texture analysis in magnetic resonance imaging: Review and considerations for future applications. In: Assessment of Cellular and Organ Function and Dysfunction Using Direct and Derived MRI Methodologies. InTech (2016)

    Google Scholar 

  8. Materka, A., Strzelecki, M.: On the importance of MRI nonuniformity correction for texture analysis. In: Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA) 2013, pp. 118–123. IEEE (2013)

    Google Scholar 

  9. Mjöberg, B.: The theory of early loosening of hip prostheses. Orthopedics 20(12), 1169–1175 (1997)

    Google Scholar 

  10. Piórkowski, A.: A statistical dominance algorithm for edge detection and segmentation of medical images. In: Piȩtka, E., Badura, P., Kawa, J., Wieclawek, W. (eds.) Information Technologies in Medicine. AISC, vol. 471, pp. 3–14. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39796-2_1

    Chapter  Google Scholar 

  11. Thevenot, J., et al.: Trabecular homogeneity index derived from plain radiograph to evaluate bone quality. J. Bone Mineral Res. 28(12), 2584–2591 (2013)

    Article  Google Scholar 

  12. Wilkie, J.R., Giger, M.L., Engh, C.A., Hopper, R.H., Martell, J.M.: Radiographic texture analysis in the characterization of trabecular patterns in periprosthetic osteolysis. Acad. Radiol. 15(2), 176–185 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcin Kociołek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kociołek, M., Piórkowski, A., Obuchowicz, R., Kamiński, P., Strzelecki, M. (2018). Lytic Region Recognition in Hip Radiograms by Means of Statistical Dominance Transform. In: Chmielewski, L., Kozera, R., Orłowski, A., Wojciechowski, K., Bruckstein, A., Petkov, N. (eds) Computer Vision and Graphics. ICCVG 2018. Lecture Notes in Computer Science(), vol 11114. Springer, Cham. https://doi.org/10.1007/978-3-030-00692-1_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00692-1_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00691-4

  • Online ISBN: 978-3-030-00692-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics