Abstract
Probabilistic aggregation is a self-organised behaviour studied in swarm robotics. It aims at gathering a population of robots in the same place, in order to favour the execution of other more complex collective behaviours or tasks. However, probabilistic aggregation is extremely sensitive to experimental conditions, and thus requires specific parameter tuning for different conditions such as population size or density. To tackle this challenge, in this paper, we present a novel embodied evolution approach for swarm robotics based on social dynamics. This idea hinges on the cultural evolution metaphor, which postulates that good ideas spread widely in a population. Thus, we propose that good parameter settings can spread following a social dynamics process. Testing this idea on probabilistic aggregation and using the minimal naming game to emulate social dynamics, we observe a significant improvement in the scalability of the aggregation process.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Baronchelli, A.: Role of feedback and broadcasting in the naming game. Phys. Rev. E 83(4), 046103 (2011)
Baronchelli, A., Felici, M., Loreto, V., Caglioti, E., Steels, L.: Sharp transition towards shared vocabularies in multi-agent systems. J. Stat. Mech.: Theory Exp. 2006(06), P06014 (2006)
Bayindir, L., Sahin, E.: Modeling self-organized aggregation in swarm robotic systems. In: IEEE Swarm Intelligence Symposium, SIS 2009, pp. 88–95. IEEE (2009)
Bianco, R., Nolfi, S.: Toward open-ended evolutionary robotics: evolving elementary robotic units able to self-assemble and self-reproduce. Connect. Sci. 16(4), 227–248 (2004)
Bodi, M., Thenius, R., Szopek, M., Schmickl, T., Crailsheim, K.: Interaction of robot swarms using the honeybee-inspired control algorithm beeclust. Math. Comput. Model. Dyn. Syst. 18(1), 87–100 (2012)
Bonani, M., et al.: The marXbot, a miniature mobile robot opening new perspectives for the collective-robotic research. In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4187–4193. IEEE (2010)
Brambilla, M., Ferrante, E., Birattari, M., Dorigo, M.: Swarm robotics: a review from the swarm engineering perspective. Swarm Intell. 7(1), 1–41 (2013)
Bredeche, N., Haasdijk, E., Prieto, A.: Embodied evolution in collective robotics: a review. Front. Rob. AI 5, 12 (2018)
Bredeche, N., Montanier, J.-M.: Environment-driven embodied evolution in a population of autonomous agents. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.) PPSN 2010. LNCS, vol. 6239, pp. 290–299. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15871-1_30
Camazine, S.: Self-organization in Biological Systems. Princeton University Press, Princeton (2003)
Cambier, N., Frémont, V., Ferrante, E.: Group-size regulation in self-organised aggregation through the naming game. In: International Symposium on Swarm Behavior and Bio-Inspired Robotics (SWARM 2017), Kyoto, Japan, October 2017. https://hal.archives-ouvertes.fr/hal-01679600
Castellano, C., Fortunato, S., Loreto, V.: Statistical physics of social dynamics. Rev. Mod. Phys. 81(2), 591–646 (2009)
Correll, N., Martinoli, A.: Modeling and designing self-organized aggregation in a swarm of miniature robots. Int. J. Rob. Res. 30(5), 615–626 (2011)
Deneubourg, J.L., Lioni, A., Detrain, C.: Dynamics of aggregation and emergence of cooperation. Biol. Bull. 202(3), 262–267 (2002)
Dimidov, C., Oriolo, G., Trianni, V.: Random walks in swarm robotics: an experiment with kilobots. In: Dorigo, M., et al. (eds.) ANTS 2016. LNCS, vol. 9882, pp. 185–196. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44427-7_16
Dorigo, M., et al.: Evolving self-organizing behaviors for a swarm-bot. Auton. Rob. 17(2), 223–245 (2004)
Garnier, S., et al.: The embodiment of cockroach aggregation behavior in a group of micro-robots. Artif. Life 14(4), 387–408 (2008)
Garnier, S., et al.: Aggregation behaviour as a source of collective decision in a group of cockroach-like-robots. In: Capcarrère, M.S., Freitas, A.A., Bentley, P.J., Johnson, C.G., Timmis, J. (eds.) ECAL 2005. LNCS (LNAI), vol. 3630, pp. 169–178. Springer, Heidelberg (2005). https://doi.org/10.1007/11553090_18
Gauci, M., Chen, J., Li, W., Dodd, T.J., Groß, R.: Self-organized aggregation without computation. Int. J. Rob. Res. 33(8), 1145–1161 (2014)
Jeanson, R., et al.: Self-organized aggregation in cockroaches. Anim. Behav. 69(1), 169–180 (2005)
Nolfi, S., Floreano, D.: Evolutionary Robotics: The Biology, Intelligence, and Technology of Self-organizing Machines. MIT Press, Cambridge (2000)
Noskov, N., Haasdijk, E., Weel, B., Eiben, A.E.: MONEE: using parental investment to combine open-ended and task-driven evolution. In: Esparcia-Alcázar, A.I. (ed.) EvoApplications 2013. LNCS, vol. 7835, pp. 569–578. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37192-9_57
Nouyan, S., Dorigo, M.: Chain based path formation in swarms of robots. In: Dorigo, M., Gambardella, L.M., Birattari, M., Martinoli, A., Poli, R., Stützle, T. (eds.) ANTS 2006. LNCS, vol. 4150, pp. 120–131. Springer, Heidelberg (2006). https://doi.org/10.1007/11839088_11
Pinciroli, C., et al.: ARGoS: a modular, parallel, multi-engine simulator for multi-robot systems. Swarm Intell. 6(4), 271–295 (2012)
Şahin, E.: Swarm robotics: from sources of inspiration to domains of application. In: Şahin, E., Spears, W.M. (eds.) SR 2004. LNCS, vol. 3342, pp. 10–20. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30552-1_2
Shannon, C.: A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423, 623–656 (1948)
Soysal, O., Sahin, E.: Probabilistic aggregation strategies in swarm robotic systems. In: Proceedings of 2005 IEEE Swarm Intelligence Symposium, SIS 2005, pp. 325–332. IEEE (2005)
Steels, L.: A self-organizing spatial vocabulary. Artif. Life 2(3), 319–332 (1995)
Steels, L.: Modeling the cultural evolution of language. Phys. Life Rev. 8(4), 339–356 (2011)
Trianni, V., De Simone, D., Reina, A., Baronchelli, A.: Emergence of consensus in a multi-robot network: from abstract models to empirical validation. IEEE Rob. Autom. Lett. 1(1), 348–353 (2016)
Trianni, V., Groß, R., Labella, T.H., Şahin, E., Dorigo, M.: Evolving aggregation behaviors in a swarm of robots. In: Banzhaf, W., Ziegler, J., Christaller, T., Dittrich, P., Kim, J.T. (eds.) ECAL 2003. LNCS (LNAI), vol. 2801, pp. 865–874. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-39432-7_93
Trianni, V., Nolfi, S., Dorigo, M.: Evolution, self-organization and swarm robotics. In: Blum, C., Merkle, D. (eds.) Swarm Intelligence. NCS, pp. 163–191. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-74089-6_5
Winfield, A.F., Erbas, M.D.: On embodied memetic evolution and the emergence of behavioural traditions in robots. Memet. Comput. 3(4), 261–270 (2011)
Acknowledgments
This work was funded in the framework of the Labex MS2T. It was supported by the French Government, through the program “Investments for the future” managed by the National Agency for Research (Reference ANR-11-IDEX-0004-02). Vito Trianni acknowledges support from the project DICE (FP7 Marie Curie Career Integration Grant, ID: 631297).
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Cambier, N., Frémont, V., Trianni, V., Ferrante, E. (2018). Embodied Evolution of Self-organised Aggregation by Cultural Propagation. In: Dorigo, M., Birattari, M., Blum, C., Christensen, A., Reina, A., Trianni, V. (eds) Swarm Intelligence. ANTS 2018. Lecture Notes in Computer Science(), vol 11172. Springer, Cham. https://doi.org/10.1007/978-3-030-00533-7_29
Download citation
DOI: https://doi.org/10.1007/978-3-030-00533-7_29
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-00532-0
Online ISBN: 978-3-030-00533-7
eBook Packages: Computer ScienceComputer Science (R0)