[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Embodied Evolution of Self-organised Aggregation by Cultural Propagation

  • Conference paper
  • First Online:
Swarm Intelligence (ANTS 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11172))

Included in the following conference series:

Abstract

Probabilistic aggregation is a self-organised behaviour studied in swarm robotics. It aims at gathering a population of robots in the same place, in order to favour the execution of other more complex collective behaviours or tasks. However, probabilistic aggregation is extremely sensitive to experimental conditions, and thus requires specific parameter tuning for different conditions such as population size or density. To tackle this challenge, in this paper, we present a novel embodied evolution approach for swarm robotics based on social dynamics. This idea hinges on the cultural evolution metaphor, which postulates that good ideas spread widely in a population. Thus, we propose that good parameter settings can spread following a social dynamics process. Testing this idea on probabilistic aggregation and using the minimal naming game to emulate social dynamics, we observe a significant improvement in the scalability of the aggregation process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Baronchelli, A.: Role of feedback and broadcasting in the naming game. Phys. Rev. E 83(4), 046103 (2011)

    Article  Google Scholar 

  2. Baronchelli, A., Felici, M., Loreto, V., Caglioti, E., Steels, L.: Sharp transition towards shared vocabularies in multi-agent systems. J. Stat. Mech.: Theory Exp. 2006(06), P06014 (2006)

    Article  Google Scholar 

  3. Bayindir, L., Sahin, E.: Modeling self-organized aggregation in swarm robotic systems. In: IEEE Swarm Intelligence Symposium, SIS 2009, pp. 88–95. IEEE (2009)

    Google Scholar 

  4. Bianco, R., Nolfi, S.: Toward open-ended evolutionary robotics: evolving elementary robotic units able to self-assemble and self-reproduce. Connect. Sci. 16(4), 227–248 (2004)

    Article  Google Scholar 

  5. Bodi, M., Thenius, R., Szopek, M., Schmickl, T., Crailsheim, K.: Interaction of robot swarms using the honeybee-inspired control algorithm beeclust. Math. Comput. Model. Dyn. Syst. 18(1), 87–100 (2012)

    Article  Google Scholar 

  6. Bonani, M., et al.: The marXbot, a miniature mobile robot opening new perspectives for the collective-robotic research. In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4187–4193. IEEE (2010)

    Google Scholar 

  7. Brambilla, M., Ferrante, E., Birattari, M., Dorigo, M.: Swarm robotics: a review from the swarm engineering perspective. Swarm Intell. 7(1), 1–41 (2013)

    Article  Google Scholar 

  8. Bredeche, N., Haasdijk, E., Prieto, A.: Embodied evolution in collective robotics: a review. Front. Rob. AI 5, 12 (2018)

    Article  Google Scholar 

  9. Bredeche, N., Montanier, J.-M.: Environment-driven embodied evolution in a population of autonomous agents. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.) PPSN 2010. LNCS, vol. 6239, pp. 290–299. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15871-1_30

    Chapter  Google Scholar 

  10. Camazine, S.: Self-organization in Biological Systems. Princeton University Press, Princeton (2003)

    MATH  Google Scholar 

  11. Cambier, N., Frémont, V., Ferrante, E.: Group-size regulation in self-organised aggregation through the naming game. In: International Symposium on Swarm Behavior and Bio-Inspired Robotics (SWARM 2017), Kyoto, Japan, October 2017. https://hal.archives-ouvertes.fr/hal-01679600

  12. Castellano, C., Fortunato, S., Loreto, V.: Statistical physics of social dynamics. Rev. Mod. Phys. 81(2), 591–646 (2009)

    Article  Google Scholar 

  13. Correll, N., Martinoli, A.: Modeling and designing self-organized aggregation in a swarm of miniature robots. Int. J. Rob. Res. 30(5), 615–626 (2011)

    Article  Google Scholar 

  14. Deneubourg, J.L., Lioni, A., Detrain, C.: Dynamics of aggregation and emergence of cooperation. Biol. Bull. 202(3), 262–267 (2002)

    Article  Google Scholar 

  15. Dimidov, C., Oriolo, G., Trianni, V.: Random walks in swarm robotics: an experiment with kilobots. In: Dorigo, M., et al. (eds.) ANTS 2016. LNCS, vol. 9882, pp. 185–196. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44427-7_16

    Chapter  Google Scholar 

  16. Dorigo, M., et al.: Evolving self-organizing behaviors for a swarm-bot. Auton. Rob. 17(2), 223–245 (2004)

    Article  Google Scholar 

  17. Garnier, S., et al.: The embodiment of cockroach aggregation behavior in a group of micro-robots. Artif. Life 14(4), 387–408 (2008)

    Article  Google Scholar 

  18. Garnier, S., et al.: Aggregation behaviour as a source of collective decision in a group of cockroach-like-robots. In: Capcarrère, M.S., Freitas, A.A., Bentley, P.J., Johnson, C.G., Timmis, J. (eds.) ECAL 2005. LNCS (LNAI), vol. 3630, pp. 169–178. Springer, Heidelberg (2005). https://doi.org/10.1007/11553090_18

    Chapter  Google Scholar 

  19. Gauci, M., Chen, J., Li, W., Dodd, T.J., Groß, R.: Self-organized aggregation without computation. Int. J. Rob. Res. 33(8), 1145–1161 (2014)

    Article  Google Scholar 

  20. Jeanson, R., et al.: Self-organized aggregation in cockroaches. Anim. Behav. 69(1), 169–180 (2005)

    Article  Google Scholar 

  21. Nolfi, S., Floreano, D.: Evolutionary Robotics: The Biology, Intelligence, and Technology of Self-organizing Machines. MIT Press, Cambridge (2000)

    Google Scholar 

  22. Noskov, N., Haasdijk, E., Weel, B., Eiben, A.E.: MONEE: using parental investment to combine open-ended and task-driven evolution. In: Esparcia-Alcázar, A.I. (ed.) EvoApplications 2013. LNCS, vol. 7835, pp. 569–578. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37192-9_57

    Chapter  Google Scholar 

  23. Nouyan, S., Dorigo, M.: Chain based path formation in swarms of robots. In: Dorigo, M., Gambardella, L.M., Birattari, M., Martinoli, A., Poli, R., Stützle, T. (eds.) ANTS 2006. LNCS, vol. 4150, pp. 120–131. Springer, Heidelberg (2006). https://doi.org/10.1007/11839088_11

    Chapter  Google Scholar 

  24. Pinciroli, C., et al.: ARGoS: a modular, parallel, multi-engine simulator for multi-robot systems. Swarm Intell. 6(4), 271–295 (2012)

    Article  Google Scholar 

  25. Şahin, E.: Swarm robotics: from sources of inspiration to domains of application. In: Şahin, E., Spears, W.M. (eds.) SR 2004. LNCS, vol. 3342, pp. 10–20. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30552-1_2

    Chapter  Google Scholar 

  26. Shannon, C.: A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423, 623–656 (1948)

    Article  MathSciNet  Google Scholar 

  27. Soysal, O., Sahin, E.: Probabilistic aggregation strategies in swarm robotic systems. In: Proceedings of 2005 IEEE Swarm Intelligence Symposium, SIS 2005, pp. 325–332. IEEE (2005)

    Google Scholar 

  28. Steels, L.: A self-organizing spatial vocabulary. Artif. Life 2(3), 319–332 (1995)

    Article  Google Scholar 

  29. Steels, L.: Modeling the cultural evolution of language. Phys. Life Rev. 8(4), 339–356 (2011)

    Article  Google Scholar 

  30. Trianni, V., De Simone, D., Reina, A., Baronchelli, A.: Emergence of consensus in a multi-robot network: from abstract models to empirical validation. IEEE Rob. Autom. Lett. 1(1), 348–353 (2016)

    Article  Google Scholar 

  31. Trianni, V., Groß, R., Labella, T.H., Şahin, E., Dorigo, M.: Evolving aggregation behaviors in a swarm of robots. In: Banzhaf, W., Ziegler, J., Christaller, T., Dittrich, P., Kim, J.T. (eds.) ECAL 2003. LNCS (LNAI), vol. 2801, pp. 865–874. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-39432-7_93

    Chapter  Google Scholar 

  32. Trianni, V., Nolfi, S., Dorigo, M.: Evolution, self-organization and swarm robotics. In: Blum, C., Merkle, D. (eds.) Swarm Intelligence. NCS, pp. 163–191. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-74089-6_5

    Chapter  Google Scholar 

  33. Winfield, A.F., Erbas, M.D.: On embodied memetic evolution and the emergence of behavioural traditions in robots. Memet. Comput. 3(4), 261–270 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded in the framework of the Labex MS2T. It was supported by the French Government, through the program “Investments for the future” managed by the National Agency for Research (Reference ANR-11-IDEX-0004-02). Vito Trianni acknowledges support from the project DICE (FP7 Marie Curie Career Integration Grant, ID: 631297).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nicolas Cambier or Eliseo Ferrante .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cambier, N., Frémont, V., Trianni, V., Ferrante, E. (2018). Embodied Evolution of Self-organised Aggregation by Cultural Propagation. In: Dorigo, M., Birattari, M., Blum, C., Christensen, A., Reina, A., Trianni, V. (eds) Swarm Intelligence. ANTS 2018. Lecture Notes in Computer Science(), vol 11172. Springer, Cham. https://doi.org/10.1007/978-3-030-00533-7_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00533-7_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00532-0

  • Online ISBN: 978-3-030-00533-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics