[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Feature Group Selection Using MKL Penalized with \(\ell _1\)-norm and SVM as Base Learner

  • Conference paper
  • First Online:
Applied Computer Sciences in Engineering (WEA 2018)

Abstract

Objective feature selection is an important component in the machine learning framework, which has addressed problems like computational burden increasing and unnecessary high-dimensional representations. Most of feature selection techniques only perform individual feature evaluations and ignore the structural relationships between features of the same nature, causing relations to break and harming the algorithm performance. In this paper a feature group selection technique is proposed with the aim of objectively identify the relevance that a feature group carries out in a classification task. The proposed method uses Multiple Kernel Learning with a penalization rule based on the \(\ell _1\)-norm and a Support Vector Machine as base learner. Performance evaluation is carried out using two binarized configurations of the freely available MFEAT dataset. It provides six different feature groups allowing to develop multiple feature group analysis. The experimental results show that the implemented methodology is stable in the identification of the relevance of each feature group during all experiments, what allows to outperform the classification accuracy of state-of-the-art methods.

H. J. Areiza-Laverde—Supported by Colciencias and the Instituto Tecnológico Metropolitano.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Brahim, A.B., Khanchel, R., Limam, M.: Robust ensemble based algorithms for multi-source data classification. Int. J. Comput. Inf. Syst. Ind. Manag. Appl. 4, 420–427 (2012)

    Google Scholar 

  2. Cilia, N.D., De Stefano, C., Fontanella, F., di Freca, A.S.: A ranking-based feature selection approach for handwritten character recognition. Pattern Recognit. Lett. (2018)

    Google Scholar 

  3. Cristianini, N., Shawe-Taylor, J.: An introduction to Support Vector Machines and Other Kernel-based Learning Methods. Cambridge University Press, Cambridge (2000)

    Book  Google Scholar 

  4. Culache, O., Obadă, D.R.: Multimodality as a premise for inducing online flow on a brand website: a social semiotic approach. Procedia-Soc. Behav. Sci. 149, 261–268 (2014)

    Article  Google Scholar 

  5. Damoulas, T., Girolami, M.A.: Pattern recognition with a Bayesian Kernel combination machine. Pattern Recognit. Lett. 30(1), 46–54 (2009)

    Article  Google Scholar 

  6. De Stefano, C., Fontanella, F., Marrocco, C., Di Freca, A.S.: A GA-based feature selection approach with an application to handwritten character recognition. Pattern Recognit. Lett. 35, 130–141 (2014)

    Article  Google Scholar 

  7. Dheeru, D., Karra Taniskidou, E., Duin, R.: UCI machine learning repository - multiple features data set (2017). https://archive.ics.uci.edu/ml/datasets/Multiple+Features

  8. Dhifli, W., Aridhi, S., Nguifo, E.M.: MR-SimLab: scalable subgraph selection with label similarity for big data. Inf. Syst. 69, 155–163 (2017)

    Article  Google Scholar 

  9. Foresti, L., Tuia, D., Timonin, V., Kanevski, M.F.: Time series input selection using multiple Kernel learning. In: ESANN, pp. 123–128 (2010)

    Google Scholar 

  10. Gönen, G.B., Gönen, M., Gürgen, F.: Probabilistic and discriminative group-wise feature selection methods for credit risk analysis. Expert Syst. Appl. 39(14), 11709–11717 (2012)

    Article  Google Scholar 

  11. Gönen, M., Alpaydın, E.: Multiple Kernel learning algorithms. J. Mach. Learn. Res. 12(Jul), 2211–2268 (2011)

    MathSciNet  MATH  Google Scholar 

  12. Gu, X., Angelov, P.P.: Self-organising fuzzy logic classifier. Inf. Sci. 447, 36–51 (2018)

    Article  Google Scholar 

  13. Hernández-Muriel, J.A., Álvarez-Meza, A.M., Echeverry-Correa, J.D., Orozco-Gutierrez, A.A., Álvarez-López, M.A.: Feature relevance estimation for vibration-based condition monitoring of an internal combustion engine. Tecno Lóg. 20, 159–174 (2017). http://www.scielo.org.co/scielo.php?script=sciarttext&pid=S0123-77992017000200011&nrm=iso

    Google Scholar 

  14. Koç, M., Barkana, A.: Application of linear regression classification to low-dimensional datasets. Neurocomputing 131, 331–335 (2014)

    Article  Google Scholar 

  15. Kyunghoon, K.: Approaches to the design of machine learning system. Ph.D. thesis, Escuela de Graduados de la Universidad Nacional de Seúl (2016)

    Google Scholar 

  16. Li, J., Cheng, K., Wang, S., Morstatter, F., Trevino, R.P., Tang, J., Liu, H.: Feature selection: a data perspective. ACM Comput. Surv. (CSUR) 50(6), 94 (2017)

    Article  Google Scholar 

  17. Mosek, A.: The mosek optimization software. 54(2-1), 5 (2010). http://www.mosek.com

  18. Raza, H., Cecotti, H., Prasad, G.: Optimising frequency band selection with forward-addition and backward-elimination algorithms in EEG-based brain-computer interfaces. In: 2015 International Joint Conference on Neural Networks (IJCNN), pp. 1–7. IEEE (2015)

    Google Scholar 

  19. Subrahmanya, N., Shin, Y.C.: Automated sensor selection and fusion for monitoring and diagnostics of plunge grinding. J. Manuf. Sci. Eng. 130(3), 031014 (2008)

    Article  Google Scholar 

  20. Symons, C.T., Arel, I.: Multi-view budgeted learning under label and feature constraints using label-guided graph-based regularization. In: International Conference on Machine Learning, Workshop on Combining Learning Strategies to Reduce Label Cost. Citeseer (2011)

    Google Scholar 

  21. Tibshirani, R.: Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B (Methodol.) 58, 267–288 (1996)

    MathSciNet  MATH  Google Scholar 

  22. Wang, J., Wang, M., Li, P., Liu, L., Zhao, Z., Hu, X., Wu, X.: Online feature selection with group structure analysis. IEEE Trans. Knowl. Data Eng. 27(11), 3029–3041 (2015)

    Article  Google Scholar 

  23. Witten, I.H., Frank, E., Hall, M.A., Pal, C.J.: Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann, Burlington (2016)

    Google Scholar 

  24. Xiang, S., Yang, T., Ye, J.: Simultaneous feature and feature group selection through hard thresholding. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 532–541. ACM (2014)

    Google Scholar 

  25. Xu, Z., Jin, R., Yang, H., King, I., Lyu, M.R.: Simple and efficient multiple Kernel learning by group lasso. In: Proceedings of the 27th International Conference on Machine Learning (ICML 2010), pp. 1175–1182. Citeseer (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrés Eduardo Castro-Ospina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Areiza-Laverde, H.J., Díaz, G.M., Castro-Ospina, A.E. (2018). Feature Group Selection Using MKL Penalized with \(\ell _1\)-norm and SVM as Base Learner. In: Figueroa-García, J., López-Santana, E., Rodriguez-Molano, J. (eds) Applied Computer Sciences in Engineering. WEA 2018. Communications in Computer and Information Science, vol 915. Springer, Cham. https://doi.org/10.1007/978-3-030-00350-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00350-0_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00349-4

  • Online ISBN: 978-3-030-00350-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics