Abstract
Multi-domain opinion mining consists in estimating the polarity of a document by exploiting domain-specific information. One of the main issue of the approaches discussed in literature is their poor capability of being applied on domains that have not been used for building the opinion model. In this paper, we present an approach exploiting the linguistic overlap between domains for building models enabling the estimation of polarities for documents belonging to any other domain. The system implementing such an approach has been presented at the third edition of the Semantic Sentiment Analysis Challenge co-located with ESWC 2018. Fuzzy representation of features polarity supports the modeling of information uncertainty learned from training set and integrated with knowledge extracted from two well-known resources used in the opinion mining field, namely Sentic.Net and the General Inquirer. The proposed technique has been validated on a multi-domain dataset and the results demonstrated the effectiveness of the proposed approach by setting a plausible starting point for future work.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
- 3.
- 4.
All the material used for the evaluation and the built models are available at http://goo.gl/pj0nWS.
References
Pang, B., Lee, L., Vaithyanathan, S.: Thumbs up? Sentiment classification using machine learning techniques. In: Proceedings of EMNLP, Philadelphia, Association for Computational Linguistics, pp. 79–86 (2002)
Blitzer, J., Dredze, M., Pereira, F.: Biographies, bollywood, boom-boxes and blenders: domain adaptation for sentiment classification. In: ACL, pp. 187–205 (2007)
Pan, S.J., Ni, X., Sun, J.T., Yang, Q., Chen, Z.: Cross-domain sentiment classification via spectral feature alignment. In: WWW, pp. 751–760 (2010)
Liu, B., Zhang, L.: A survey of opinion mining and sentiment analysis. In: Aggarwal, C.C., Zhai, C.X. (eds.) Mining Text Data, pp. 415–463. Springer (2012)
Pang, B., Lee, L.: A sentimental education: sentiment analysis using subjectivity summarization based on minimum cuts. In: ACL, pp. 271–278 (2004)
Dave, K., Lawrence, S., Pennock, D.M.: Mining the peanut gallery: opinion extraction and semantic classification of product reviews. In: WWW, pp. 519–528 (2003)
Paltoglou, G., Thelwall, M.: A study of information retrieval weighting schemes for sentiment analysis. In: ACL, pp. 1386–1395 (2010)
Tan, S., Wang, Y., Cheng, X.: Combining learn-based and lexicon-based techniques for sentiment detection without using labeled examples. In: SIGIR, pp. 743–744 (2008)
Qiu, L., Zhang, W., Hu, C., Zhao, K.: SELC: a self-supervised model for sentiment classification. In: CIKM, pp. 929–936 (2009)
Melville, P., Gryc, W., Lawrence, R.D.: Sentiment analysis of blogs by combining lexical knowledge with text classification. In: KDD, pp. 1275–1284 (2009)
Taboada, M., Brooke, J., Tofiloski, M., Voll, K.D., Stede, M.: Lexicon-based methods for sentiment analysis. Comput. Linguist. 37(2), 267–307 (2011)
Somasundaran, S.: Discourse-level relations for opinion analysis. PhD thesis, University of Pittsburgh (2010)
Wang, H., Zhou, G.: Topic-driven multi-document summarization. In: IALP, pp. 195–198 (2010)
Dragoni, M.: Shellfbk: an information retrieval-based system for multi-domain sentiment analysis. In: Proceedings of the 9th International Workshop on Semantic Evaluation. SemEval ’2015, Denver, Colorado, Association for Computational Linguistics, pp. 502–509 (2015)
Petrucci, G., Dragoni, M.: An information retrieval-based system for multi-domain sentiment analysis. In: Gandon, F., Cabrio, E., Stankovic, M., Zimmermann, A. (eds.) SemWebEval 2015. CCIS, vol. 548, pp. 234–243. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25518-7_20
Rexha, A., Kröll, M., Dragoni, M., Kern, R.: Exploiting propositions for opinion mining. In: Sack, H., Dietze, S., Tordai, A., Lange, C. (eds.) SemWebEval 2016. CCIS, vol. 641, pp. 121–125. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46565-4_9
Federici, M., Dragoni, M.: A knowledge-based approach for aspect-based opinion mining. In: Sack, H., Dietze, S., Tordai, A., Lange, C. (eds.) SemWebEval 2016. CCIS, vol. 641, pp. 141–152. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46565-4_11
Rexha, A., Kröll, M., Dragoni, M., Kern, R.: Opinion mining with a clause-based approach. In: Dragoni, M., Solanki, M., Blomqvist, E. (eds.) SemWebEval 2017. CCIS, vol. 769, pp. 166–175. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69146-6_15
Federici, M., Dragoni, M.: Aspect-based opinion mining using knowledge bases. In: Dragoni, M., Solanki, M., Blomqvist, E. (eds.) SemWebEval 2017. CCIS, vol. 769, pp. 133–147. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69146-6_13
Dragoni, M., Tettamanzi, A.G., da Costa Pereira, C.: Propagating and aggregating fuzzy polarities for concept-level sentiment analysis. Cogn. Comput. 7(2), 186–197 (2015)
Dragoni, M., Tettamanzi, A.G.B., da Costa Pereira, C.: A fuzzy system for concept-level sentiment analysis. In: Presutti, V., Stankovic, M., Cambria, E., Cantador, I., Di Iorio, A., Di Noia, T., Lange, C., Reforgiato Recupero, D., Tordai, A. (eds.) SemWebEval 2014. CCIS, vol. 475, pp. 21–27. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12024-9_2
Petrucci, G., Dragoni, M.: The IRMUDOSA system at ESWC-2016 challenge on semantic sentiment analysis. In: Sack, H., Dietze, S., Tordai, A., Lange, C. (eds.) SemWebEval 2016. CCIS, vol. 641, pp. 126–140. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46565-4_10
Dragoni, M., Petrucci, G.: A fuzzy-based strategy for multi-domain sentiment analysis. Int. J. Approx. Reason. 93, 59–73 (2018)
Petrucci, G., Dragoni, M.: The IRMUDOSA system at ESWC-2017 challenge on semantic sentiment analysis. In: Dragoni, M., Solanki, M., Blomqvist, E. (eds.) SemWebEval 2017. CCIS, vol. 769, pp. 148–165. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69146-6_14
da Costa Pereira, C., Dragoni, M., Pasi, G.: A prioritized “and” aggregation operator for multidimensional relevance assessment. In: Serra, R., Cucchiara, R. (eds.) AI*IA 2009: Emergent Perspectives in Artificial Intelligence, XIth International Conference of the Italian Association for Artificial Intelligence, Reggio Emilia, Italy, December 9–12, 2009, Proceedings. Volume 5883 of Lecture Notes in Computer Science, pp. 72–81. Springer (2009)
Federici, M., Dragoni, M.: Towards unsupervised approaches for aspects extraction. In: Dragoni, M., Recupero, D.R., Denecke, K., Deng, Y., Declerck, T. (eds.) Joint Proceedings of the 2th Workshop on Emotions, Modality, Sentiment Analysis and the Semantic Web and the 1st International Workshop on Extraction and Processing of Rich Semantics from Medical Texts co-located with ESWC 2016, Heraklion, Greece, May 29, 2016. Volume 1613 of CEUR Workshop Proceedings., CEUR-WS.org (2016)
Federici, M., Dragoni, M.: A branching strategy for unsupervised aspect-based sentiment analysis. In: Dragoni, M., Recupero, D.R. (eds.) Proceedings of the 3rd International Workshop at ESWC on Emotions, Modality, Sentiment Analysis and the Semantic Web Co-located with 14th ESWC 2017, Portroz, Slovenia, May 28, 2017. Volume 1874 of CEUR Workshop Proceedings., CEUR-WS.org (2017)
Riloff, E., Patwardhan, S., Wiebe, J.: Feature subsumption for opinion analysis. In: EMNLP, pp. 440–448 (2006)
Wilson, T., Wiebe, J., Hwa, R.: Recognizing strong and weak opinion clauses. Comput. Intell. 22(2), 73–99 (2006)
Palmero Aprosio, A., Corcoglioniti, F., Dragoni, M., Rospocher, M.: Supervised opinion frames detection with RAID. In: Gandon, F., Cabrio, E., Stankovic, M., Zimmermann, A. (eds.) SemWebEval 2015. CCIS, vol. 548, pp. 251–263. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25518-7_22
Hatzivassiloglou, V., Wiebe, J.: Effects of adjective orientation and gradability on sentence subjectivity. In: COLING, pp. 299–305 (2000)
Kim, S.M., Hovy, E.H.: Crystal: analyzing predictive opinions on the web. In: EMNLP-CoNLL, pp. 1056–1064 (2007)
Rexha, A., Kröll, M., Dragoni, M., Kern, R.: Polarity classification for target phrases in tweets: a Word2Vec approach. In: Sack, H., Rizzo, G., Steinmetz, N., Mladenić, D., Auer, S., Lange, C. (eds.) ESWC 2016. LNCS, vol. 9989, pp. 217–223. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47602-5_40
Rexha, A., Kröll, M., Kern, R., Dragoni, M.: An embedding approach for microblog polarity classification. In: Dragoni, M., Recupero, D.R. (eds.) Proceedings of the 3rd International Workshop on Emotions, Modality, Sentiment Analysis and the Semantic Web co-located with 14th ESWC 2017, Portroz, Slovenia, May 28, 2017. Volume 1874 of CEUR Workshop Proceedings., CEUR-WS.org (2017)
Recupero, D.R., Dragoni, M., Presutti, V.: ESWC 15 challenge on concept-level sentiment analysis. In: Gandon, F., Cabrio, E., Stankovic, M., Zimmermann, A. (eds.) SemWebEval 2015. CCIS, vol. 548, pp. 211–222. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25518-7_18
Dragoni, M., Reforgiato Recupero, D.: Challenge on fine-grained sentiment analysis within ESWC2016. In: Sack, H., Dietze, S., Tordai, A., Lange, C. (eds.) SemWebEval 2016. CCIS, vol. 641, pp. 79–94. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46565-4_6
Dragoni, M., Solanki, M., Blomqvist, E., eds.: Semantic Web Challenges - 4th SemWebEval Challenge at ESWC 2017, Portoroz, Slovenia, May 28 - June 1, 2017, Revised Selected Papers. Volume 769 of Communications in Computer and Information Science. Springer (2017)
Jakob, N., Gurevych, I.: Extracting opinion targets in a single and cross-domain setting with conditional random fields. In: EMNLP, pp. 1035–1045 (2010)
Jin, W., Ho, H.H., Srihari, R.K.: Opinionminer: a novel machine learning system for web opinion mining and extraction. In: KDD, pp. 1195–1204 (2009)
Liu, B., Hu, M., Cheng, J.: Opinion observer: analyzing and comparing opinions on the web. In: WWW, pp. 342–351 (2005)
Wu, Y., Zhang, Q., Huang, X., Wu, L.: Phrase dependency parsing for opinion mining. In: EMNLP, pp. 1533–1541 (2009)
Su, Q., et al.: Hidden sentiment association in Chinese web opinion mining. In: WWW, pp. 959–968 (2008)
Dragoni, M.: NEUROSENT-PDI at semeval-2018 task 1: leveraging a multi-domain sentiment model for inferring polarity in micro-blog text. In: Apidianaki, M., Mohammad, S.M., May, J., Shutova, E., Bethard, S., Carpuat, M. (eds.) Proceedings of The 12th International Workshop on Semantic Evaluation, SemEval@NAACL-HLT, New Orleans, Louisiana, June 5–6, 2018, Association for Computational Linguistics, pp. 102–108 (2018)
Dragoni, M.: NEUROSENT-PDI at semeval-2018 task 3: understanding irony in social networks through a multi-domain sentiment model. In: Apidianaki, M., Mohammad, S.M., May, J., Shutova, E., Bethard, S., Carpuat, M. (eds.) Proceedings of The 12th International Workshop on Semantic Evaluation, SemEval@NAACL-HLT, New Orleans, Louisiana, June 5–6, 2018, Association for Computational Linguistics, pp. 512–519 (2018)
Dragoni, M., Azzini, A., Tettamanzi, A.G.B.: A novel similarity-based crossover for artificial neural network evolution. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.) PPSN 2010. LNCS, vol. 6238, pp. 344–353. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15844-5_35
Qiu, G., Liu, B., Bu, J., Chen, C.: Opinion word expansion and target extraction through double propagation. Comput. Linguist. 37(1), 9–27 (2011)
Dragoni, M., da Costa Pereira, C., Tettamanzi, A.G.B., Villata, S.: Combining argumentation and aspect-based opinion mining: the smack system. AI Commun. 31(1), 75–95 (2018)
Dragoni, M.: A three-phase approach for exploiting opinion mining in computational advertising. IEEE Intell. Syst. 32(3), 21–27 (2017)
Dragoni, M., Petrucci, G.: A neural word embeddings approach for multi-domain sentiment analysis. IEEE Trans. Affect. Comput. 8(4), 457–470 (2017)
Dragoni, M.: Computational advertising in social networks: an opinion mining-based approach. In: Haddad, H.M., Wainwright, R.L., Chbeir, R. (eds.) Proceedings of the 33rd Annual ACM Symposium on Applied Computing, SAC 2018, Pau, France, April 09–13, 2018, ACM, pp. 1798–1804 (2018)
Barbosa, L., Feng, J.: Robust sentiment detection on twitter from biased and noisy data. In: COLING (Posters), pp. 36–44 (2010)
Bermingham, A., Smeaton, A.F.: Classifying sentiment in microblogs: is brevity an advantage? In: CIKM, pp. 1833–1836 (2010)
Go, A., Bhayani, R., Huang, L.: Twitter sentiment classification using distant supervision. CS224N Project Report, Standford University (2009)
Cambria, E., Hussain, A.: Sentic computing: a common-sense-based framework for concept-level sentiment analysis (2015)
Cambria, E., Hussain, A.: Sentic album: content-, concept-, and context-based online personal photo management system. Cogn. Comput. 4(4), 477–496 (2012)
Wang, Q.F., Cambria, E., Liu, C.L., Hussain, A.: Common sense knowledge for handwritten chinese recognition. Cogn. Comput. 5(2), 234–242 (2013)
Yoshida, Y., Hirao, T., Iwata, T., Nagata, M., Matsumoto, Y.: Transfer learning for multiple-domain sentiment analysis–identifying domain dependent/independent word polarity. AAA I, 1286–1291 (2011)
Ponomareva, N., Thelwall, M.: Semi-supervised vs. cross-domain graphs for sentiment analysis. In: RANLP, pp. 571–578 (2013)
Huang, S., Niu, Z., Shi, C.: Automatic construction of domain-specific sentiment lexicon based on constrained label propagation. Knowl.-Based Syst. 56, 191–200 (2014)
Dragoni, M., da Costa Pereira, C., Tettamanzi, A.G.B., Villata, S.: Smack: an argumentation framework for opinion mining. In Kambhampati, S. (ed.) Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI 2016, New York, NY, USA, 9–15 July 2016, IJCAI/AAAI Press, pp. 4242–4243 (2016)
Cambria, E., Olsher, D., Rajagopal, D.: SenticNet 3: a common and common-sense knowledge base for cognition-driven sentiment analysis. In: AAAI, pp. 1515–1521 (2014)
Stone, P.J., Dunphy, D., Marshall, S.: The General Inquirer: A Computer Approach to Content Analysis. M.I.T. Press, Oxford, England (1966)
Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)
Manning, C.D., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S.J., McClosky, D.: The Stanford CoreNLP natural language processing toolkit. In: Proceedings of 52nd Annual Meeting of the Association for Computational Linguistics: System Demonstrations, Baltimore, Maryland, Association for Computational Linguistics, pp. 55–60 (2014)
van Rijsbergen, C.J.: Information Retrieval. Butterworth, London (1979)
Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning - I. Inf. Sci. 8(3), 199–249 (1975)
Hellendoorn, H., Thomas, C.: Defuzzification in fuzzy controllers. Intell. Fuzzy Syst. 1, 109–123 (1993)
Dragoni, M., Tettamanzi, A., da Costa Pereira, C.: Dranziera: an evaluation protocol for multi-domain opinion mining. In: Chair, N.C.C., Choukri, K., Declerck, T., Goggi, S., Grobelnik, M., Maegaard, B., Mariani, J., Mazo, H., Moreno, A., Odijk, J., Piperidis, S. (eds.) Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC 2016), Paris, France, European Language Resources Association (ELRA) (2016)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Petrucci, G., Dragoni, M. (2018). The IRMUDOSA System at ESWC-2018 Challenge on Semantic Sentiment Analysis. In: Buscaldi, D., Gangemi, A., Reforgiato Recupero, D. (eds) Semantic Web Challenges. SemWebEval 2018. Communications in Computer and Information Science, vol 927. Springer, Cham. https://doi.org/10.1007/978-3-030-00072-1_14
Download citation
DOI: https://doi.org/10.1007/978-3-030-00072-1_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-00071-4
Online ISBN: 978-3-030-00072-1
eBook Packages: Computer ScienceComputer Science (R0)