[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Novel Hierarchical Identity-Based Fully Homomorphic Encryption Scheme from Lattices

  • Conference paper
  • First Online:
Cloud Computing and Security (ICCCS 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11065))

Included in the following conference series:

Abstract

Hierarchical identity-based fully homomorphic encryption (HIBFHE) scheme is a powerful scheme, as it aggregates the advantages of both fully homomorphic encryption and hierarchical identity-based encryption systems. In recent years, the construction of HIBFHE schemes were mainly based on lattices due to their conjectured resistance against quantum cryptanalysis, however, which makes these cryptosystems further unpractical. The first hierarchical identity-based fully homomorphic encryption scheme was presented by Gentry, Sahai and Waters (CRYPTO 2013). Their scheme however works with a not well performed trapdoor and delegation algorithm; that is, the trapdoor is conceptually and algorithmically complex, and the delegation algorithm’s performance is sensitive with the lattice dimension. In this work, we substantially improve their work by using a novel trapdoor function and its relevant algorithms. Specifically, we first use that construct an efficient algorithm for sampling-invertible matrix, based on this we construct a novel delegation algorithm which can keep the lattice dimension unchanged upon delegation. Building on this result, we first construct a more efficient hierarchical identity-based encryption scheme, and then transform it to HIBFHE scheme by using eigenvector method. Under the hardness of Learning with Errors problem, the resulting scheme can be proven secure in the standard model. To the best of our knowledge, this is the first HIBFHE scheme in fixed dimension.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings of 41th ACM Symposium on Theory of Computing, STOC 2009, pp. 169–178. ACM, Bethesda (2009)

    Google Scholar 

  2. van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic encryption over the integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 24–43. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_2

    Chapter  Google Scholar 

  3. Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from ring-LWE and security for key dependent messages. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9_29

    Chapter  Google Scholar 

  4. Gentry, C., Halevi, S., Smart, N.P.: Fully homomorphic encryption with polylog overhead. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 465–482. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_28

    Chapter  Google Scholar 

  5. Ducas, L., Micciancio, D.: FHEW: bootstrapping homomorphic encryption in less than a second. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 617–640. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5_24

    Chapter  MATH  Google Scholar 

  6. Nuida, K., Kurosawa, K.: Fully homomorphic encryption over integers for non-binary message spaces. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 537–555. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5_21

    Chapter  Google Scholar 

  7. Canetti, R., Halevi, S., Katz, J.: A forward-secure public-key encryption scheme. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 255–271. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9_16

    Chapter  Google Scholar 

  8. Dodis, Y., Fazio, N.: Public key broadcast encryption for stateless receivers. In: Feigenbaum, J. (ed.) DRM 2002. LNCS, vol. 2696, pp. 61–80. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-44993-5_5

    Chapter  Google Scholar 

  9. Yao, D., Fazio, N., Dodis, Y., Lysyanskaya, A.: ID-based encryption for complex hierarchies with applications to forward security and broadcast encryption. In: ACM Conference on Computer and Communications Security, pp. 354–363. ACM, Washington (2004)

    Google Scholar 

  10. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti, R., Garay, Juan A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 75–92. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_5

    Chapter  Google Scholar 

  11. Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate a lattice basis. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 523–552. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_27

    Chapter  Google Scholar 

  12. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: STOC 2005 Proceedings of the thirty-seventh annual ACM symposium on Theory of computing, pp. 84–93. ACM, Baltimore (2005)

    Google Scholar 

  13. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: Proceedings of 41th ACM Symposium on Theory of Computing, pp 197–206. ACM, Victoria (2008)

    Google Scholar 

  14. Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_28

    Chapter  MATH  Google Scholar 

  15. Agrawal, S., Boneh, D., Boyen, X.: Lattice basis delegation in fixed dimension and shorter-ciphertext hierarchical IBE. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 98–115. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14623-7_6

    Chapter  MATH  Google Scholar 

  16. Ajtai, M.: Generating hard instances of the short basis problem. In: Wiedermann, J., van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644, pp. 1–9. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48523-6_1

    Chapter  Google Scholar 

  17. Alwen, J., Peikert, C.: Generating shorter bases for hard random lattices. Theor. Comput. Syst. 48(3), 535–553 (2009)

    Article  MathSciNet  Google Scholar 

  18. Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 700–718. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_41

    Chapter  Google Scholar 

  19. Micciancio, D., Goldwasser, S.: Complexity of lattice problems: a cryptographic perspective. Siam J. Comput. 671(6495), 220 (2002)

    MATH  Google Scholar 

  20. Ajtai, M.: Generating hard instances of lattice problems. In: STOC 1996 Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, pp. 99–108. ACM, Philadelphia (1996)

    Google Scholar 

  21. Micciancio, D., Regev, O.: Worst-case to average-case reductions based on Gaussian measures. SIAM J. Comput. 37(1), 267–302 (2007)

    Article  MathSciNet  Google Scholar 

  22. Peikert, C.: An efficient and parallel Gaussian sampler for lattices. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 80–97. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14623-7_5

    Chapter  Google Scholar 

  23. Yamada, S.: Adaptively secure identity-based encryption from lattices with asymptotically shorter public parameters. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 32–62. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_2

    Chapter  Google Scholar 

Download references

Acknowledgements

This work was supported by the “13th Five-Year” National Crypto Development Foundation (No.MMJJ20170122), the Project of Science and Technology Department of Henan Province (No.142300410147), the Project of Education Department of Henan Province (No.12A520021, No.16A520013), the Doctoral Fund of Henan Polytechnic University (No.B2014-044), the Natural Science Foundation of Henan Polytechnic University (No.T2018-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongli Tang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hu, M., Ye, Q., Gao, W., Tang, Y. (2018). A Novel Hierarchical Identity-Based Fully Homomorphic Encryption Scheme from Lattices. In: Sun, X., Pan, Z., Bertino, E. (eds) Cloud Computing and Security. ICCCS 2018. Lecture Notes in Computer Science(), vol 11065. Springer, Cham. https://doi.org/10.1007/978-3-030-00012-7_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00012-7_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00011-0

  • Online ISBN: 978-3-030-00012-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics