[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Hyper-Reactive Tabu Search for MaxSAT

  • Conference paper
  • First Online:
Learning and Intelligent Optimization (LION 12 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11353))

Included in the following conference series:

Abstract

Local search metaheuristics have been developed as a general tool for solving hard combinatorial search problems. However, in practice, metaheuristics very rarely work straight out of the box. An expert is frequently needed to experiment with an approach and tweak parameters, remodel the problem, and adjust search concepts to achieve a reasonably effective approach. Reactive search techniques aim to liberate the user from having to manually tweak all of the parameters of their approach. In this paper, we focus on one of the most well-known and widely used reactive techniques, reactive tabu search (RTS) [7], and propose a hyper-parameterized tabu search approach that dynamically adjusts key parameters of the search using a learned strategy. Experiments on MaxSAT show that this approach can lead to state-of-the-art performance without any expert user involvement, even when the metaheuristic knows nothing more about the underlying combinatorial problem than how to evaluate the objective function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ansótegui, C., Bacchus, F., Järvisalo, M., Martins, R.: MaxSAT Evaluation (2017). http://mse17.cs.helsinki.fi

  2. Ansotegui, C., Malitsky, Y., Samulowitz, H., Sellmann, M., Tierney, K.: Model-based geneticalgorithms for algorithm configuration. In: IJCAI, pp. 733–739 (2015)

    Google Scholar 

  3. Ansotegui, C., Sellmann, M., Tierney, K.: A gender-based genetic algorithm for the automatic configuration of algorithms. In: CP, pp. 142–157 (2009)

    Google Scholar 

  4. Ansótegui, C., Gabas, J., Malitsky, Y., Sellmann, M.: Maxsat by improved instance-specific algorithm configuration. Artif. Intell. 235, 26–39 (2016)

    Article  MathSciNet  Google Scholar 

  5. Ansótegui, C., Pon, J., Sellmann, M., Tierney, K.: Reactive dialectic search portfolios for maxsat. In: AAAI Conference on Artificial Intelligence (2017)

    Google Scholar 

  6. Argelich, J., Li, C., Manyà, F., Planes, J.: MaxSAT Evaluation (2016). www.maxsat.udl.cat

  7. Battiti, R., Tecchiolli, G.: The reactive tabu search. ORSA J. Comput. 6(2), 126–140 (1994)

    Article  Google Scholar 

  8. Battiti, R., Brunato, M., Mascia, F.: Reactive Search and Intelligent Optimization, vol. 45. Springer Science & Business Media, Berlin (2008)

    MATH  Google Scholar 

  9. Burke, E., Kendall, G., Newall, J., Hart, E., Ross, P., Schulenburg, S.: Hyper-heuristics: an emerging direction in modern search technology. Handbook of metaheuristics, pp. 457–474 (2003)

    Google Scholar 

  10. Burke, E.K., Gendreau, M., Hyde, M., Kendall, G., Ochoa, G., Özcan, E., Qu, R.: Hyper-heuristics: a survey of the state of the art. J. Oper. Res. Soc. 64(12), 1695–1724 (2013)

    Article  Google Scholar 

  11. Doerr, B., Doerr, C.: Optimal parameter choices through self-adjustment: Applying the 1/5-th rule in discrete settings. In: GECCO, pp. 1335–1342 (2015)

    Google Scholar 

  12. Doerr, B., Doerr, C.: Optimal static and self-adjusting parameter choices for the \((1+(\lambda ,\lambda ))(1+(\lambda ,\lambda ))\)genetic algorithm. Algorithmica (2017)

    Google Scholar 

  13. Glover, F., Laguna, M.: Tabu search. In: Handbook of Combinatorial Optimization, pp. 3261–3362. Springer, Berlin (2013)

    Google Scholar 

  14. Glover, F., Laguna, M., Martí, R.: Principles of tabu search. In: Gonzalez, T. (ed.) Handbook of Approximation Algorithms and Metaheuristics (2007)

    Google Scholar 

  15. Kadioglu, S., Malitsky, Y., Sellmann, M., Tierney, K.: ISAC-instance-specific algorithm configuration. In: Coelho, H., Studer, R., Wooldridge, M. (eds.) ECAI. FAIA, vol. 215, pp. 751–756 (2010)

    Google Scholar 

  16. Kadioglu, S., Sellmann, M.: Dialectic search. CP, pp. 486–500 (2009)

    Google Scholar 

  17. KhudaBukhsh, A., Xu, L., Hoos, H., Leyton-Brown, K.: SATenstein: automatically building local search sat solvers from components. In: IJCAI, pp. 517–524 (2009)

    Google Scholar 

  18. Leventhal, D., Sellmann, M.: The accuracy of search heuristics: an empirical study on knapsack problems. In: Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems, pp. 142–157 (2008)

    Google Scholar 

  19. Leyton-Brown, K., Nudelman, E., Andrew, G., McFadden, J., Shoham, Y.: A portfolio approach to algorithm selection. In: IJCAI, pp. 1542–1543 (2003)

    Google Scholar 

  20. Malitsky, Y., Sabharwal, A., Samulowitz, H., Sellmann, M.: Algorithm portfolios based on cost-sensitive hierarchical clustering. In: IJCAI, pp. 608–614 (2013)

    Google Scholar 

  21. Mısır, M., Verbeeck, K., De Causmaecker, P., Berghe, G.V.: An intelligent hyper-heuristic framework for chesc 2011. In: Learning and Intelligent Optimization, pp. 461–466. Springer, Berlin (2012)

    Google Scholar 

  22. Özcan, E., Mısır, M., Ochoa, G., Burke, E.K.: A reinforcement learning: great-deluge hyper-heuristic. In: Modeling, Analysis, and Applications in Metaheuristic Computing: Advancements and Trends: Advancements and Trends, vol. 34 (2012)

    Google Scholar 

  23. Safarpour, S., Mangassarian, H., Veneris, A., Liffiton, M., Sakallah, K.: Improved design debugging using maximum satisfiability. In: Formal Methods in Computer Aided Design, pp. 13–19. IEEE (2007)

    Google Scholar 

  24. Sugawara, T.: Maxroster: solver description. In: MaxSAT Evaluation 2017, p. 12 (2017)

    Google Scholar 

  25. Vasquez, M., Hao, J.: A “logic-constrained” knapsack formulation and a tabu algorithm for the daily photograph scheduling of an earth observation satellite. Comput. Optim. Appl. 20(2), 137–157 (2001)

    Article  MathSciNet  Google Scholar 

  26. Xu, H., Rutenbar, R., Sakallah, K.: sub-SAT: a formulation for relaxed boolean satisfiability with applications in routing. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 22(6), 814–820 (2003)

    Article  Google Scholar 

  27. Xu, L., Hoos, H., Leyton-Brown, K.: Hydra: automatically configuring algorithms for portfolio-based selection. In: AAAI, pp. 210–216 (2010)

    Google Scholar 

Download references

Acknowledgement

The authors would like to thank the Paderborn Center for Parallel Computation (PC\(^2\)) for the use of the OCuLUS cluster. This work was financially supported in part by TIN2016-76573-C2-2-P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin Tierney .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ansótegui, C., Heymann, B., Pon, J., Sellmann, M., Tierney, K. (2019). Hyper-Reactive Tabu Search for MaxSAT. In: Battiti, R., Brunato, M., Kotsireas, I., Pardalos, P. (eds) Learning and Intelligent Optimization. LION 12 2018. Lecture Notes in Computer Science(), vol 11353. Springer, Cham. https://doi.org/10.1007/978-3-030-05348-2_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05348-2_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05347-5

  • Online ISBN: 978-3-030-05348-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics