[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Malicious Domain Name Recognition Based on Deep Neural Networks

  • Conference paper
  • First Online:
Security, Privacy, and Anonymity in Computation, Communication, and Storage (SpaCCS 2018)

Abstract

Malware steals private information by randomly generating a large number of malicious domain names every day using domain generation algorithms (DGAs), which pose a great threat to our daily Internet activity. To improve recognition accuracy for these malicious domain names, this paper proposes a malicious domain name detection algorithm based on deep neural networks to capture the characteristics of malicious domain names. The resulting model is called a Discriminator based on Hierarchical Bidirectional Recurrent Neural Networks (D-HBiRNN).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hoque, N., Bhattacharyya, D.K., Kalita, J.K.: Botnet in DDoS attacks: trends and challenges. IEEE Commun. Surv. Tutor. 17(4), 2242–2270 (2015)

    Article  Google Scholar 

  2. Rossow, C.: Amplification hell: revisiting network protocols for DDoS abuse. In: Proceedings 2014 Network and Distributed System Security Symposium. Internet Society, Reston, VA (2014). https://doi.org/10.14722/ndss.2014.23233

  3. Thatte, G., Mitra, U., Heidemann, J.: Parametric methods for anomaly detection in aggregate traffic. IEEE/ACM Trans. Netw. 19(2), 512–525 (2011)

    Article  Google Scholar 

  4. Graves, A.: Supervised Sequence Labelling with Recurrent Neural Networks, vol. 385. Springer, Berlin (2012). https://doi.org/10.1007/978-3-642-24797-2

    Book  MATH  Google Scholar 

  5. Duffield, N., Haffner, P., Krishnamurthy, B., et al.: Rule-based anomaly detection on IP flows. In: INFOCOM, pp. 424–432. IEEE (2009)

    Google Scholar 

  6. Chen, T., Xu, S., Zhang, C.: Risk assessment method for network security based on intrusion detection system. Comput. Sci. 37(9), 94–96 (2010)

    Google Scholar 

  7. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: International Conference on Neural Information Processing Systems, pp. 1097–1105. Curran Associates Inc. (2012)

    Google Scholar 

  8. He, K., Zhang, X., Ren, S., et al.: Deep residual learning for image recognition. In: Computer Vision and Pattern Recognition, pp. 770–778. IEEE (2016)

    Google Scholar 

  9. Schuster, M., Paliwal, K.K.: Bidirectional recurrent neural networks. IEEE Trans. Signal Process 45(11), 2673–2681 (1997)

    Article  Google Scholar 

  10. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  11. Netlab 360 Homepage. https://data.netlab.360.com/dga. Accessed 21 Sept 2018

  12. Haddadi, F., Kayacik, H.G., Zincir-Heywood, A.N., Heywood, M.I.: Malicious automatically generated domain name detection using stateful-SBB. In: Esparcia-Alcázar, A.I. (ed.) EvoApplications 2013. LNCS, vol. 7835, pp. 529–539. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37192-9_53

    Chapter  Google Scholar 

  13. Xiong, C., Li, P., Zhang, P., Liu, Q., Tan, J.: MIRD: trigram-based Malicious URL detection Implanted with Random Domain name recognition. In: Niu, W., et al. (eds.) ATIS 2015. CCIS, vol. 557, pp. 303–314. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48683-2_27

    Chapter  Google Scholar 

  14. Jamdagni, A., Jamdagni, A., He, X., et al.: A system for denial-of-service attack detection based on multivariate correlation analysis. IEEE Trans. Parallel Distrib. Syst. 25(2), 447–456 (2014)

    Article  Google Scholar 

  15. Buczak, A.L., Guven, E.: A survey of data mining and machine learning methods for cyber security intrusion detection. IEEE Commun. Surv. Tutor. 18(2), 1153–1176 (2017)

    Article  Google Scholar 

  16. Thomas, K., Grier, C., Ma, J., et al.: Design and evaluation of a real-time URL spam filtering service. In: Security and Privacy, pp. 447–462. IEEE (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianbin Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yan, X., Cui, B., Li, J. (2018). Malicious Domain Name Recognition Based on Deep Neural Networks. In: Wang, G., Chen, J., Yang, L. (eds) Security, Privacy, and Anonymity in Computation, Communication, and Storage. SpaCCS 2018. Lecture Notes in Computer Science(), vol 11342. Springer, Cham. https://doi.org/10.1007/978-3-030-05345-1_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05345-1_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05344-4

  • Online ISBN: 978-3-030-05345-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics