Abstract
Energy harvesters have enabled widespread utilization of ultra-low-power devices that operate solely based on the energy harvested from the environment. Due to the unpredictable nature of harvested energy, these devices experience frequent power outages. They resume execution after a power loss by utilizing intermittent computing techniques and non-volatile memory. In embedded devices, intermittent computing refers to a class of computing that stores a snapshot of the system and application state, as a checkpoint, in non-volatile memory, which is used to restore the system and application state in case of power loss. Although non-volatile memory provides tolerance against power failures, they introduce new vulnerabilities to the data stored in them. Sensitive data, stored in a checkpoint, is available to an attacker after a power loss, and the state-of-the-art intermittent computing techniques fail to consider the security of checkpoints. In this paper, we utilize the vulnerabilities introduced by the intermittent computing techniques to enable various implementation attacks. For this study, we focus on TI’s Compute Through Power Loss utility as an example of the state-of-the-art intermittent computing solution. First, we analyze the security, or lack thereof, of checkpoints in the latest intermittent computing techniques. Then, we attack the checkpoints and locate sensitive data in non-volatile memory. Finally, we attack AES using this information to extract the secret key. To the best of our knowledge, this work presents the first systematic analysis of the seriousness of security threats present in the field of intermittent computing.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Agoyan, M., Dutertre, J.M., Mirbaha, A.P., Naccache, D., Ribotta, A.L., Tria, A.: Single-bit DFA using multiple-byte laser fault injection. In: 2010 IEEE International Conference on Technologies for Homeland Security (HST), pp. 113–119, Novomber 2010
Afzali-Kusha, H., Shafaei, A., Pedram, M.: A 125mV 2ns-access-time 16Kb SRAM design based on a 6T hybrid TFET-FinFET cell. In: 2018 19th International Symposium on Quality Electronic Design (ISQED), pp. 280–285, March 2018
Barenghi, A., Bertoni, G.M., Breveglieri, L., Pellicioli, M., Pelosi, G.: Fault attack on AES with single-bit induced faults. In: 2010 Sixth International Conference on Information Assurance and Security, pp. 167–172, August 2010
Beringuier-Boher, N., et al.: Voltage glitch attacks on mixed-signal systems. In: 2014 17th Euromicro Conference on Digital System Design, pp. 379-386, August 2014
Balsamo, D., Weddell, A.S., Merrett, G.V., Al-Hashimi, B.M., Brunelli, D., Benini, L.: Hibernus: sustaining computation during intermittent supply for energy-harvesting systems. IEEE Embed. Syst. Lett. 7(1), 15–18 (2015)
Chaari, M.Z., Lahiani, M., Ghariani, H.: Energy harvesting from electromagnetic radiation emissions by compact flouresent lamp. In: 2017 Ninth International Conference on Advanced Computational Intelligence (ICACI), pp. 272–275, February 2017
Chhabra, S., Solihin, Y.: i-NVMM: a secure non-volatile main memory system with incremental encryption. In: 38th International Symposium on Computer Architecture (ISCA 2011), San Jose, CA, USA, 4–8 June 2011, pp. 177–188 (2011)
Davi, L., et al.: HAFIX: hardware-assisted flow integrity extension. In: 2015 52nd ACM/EDAC/IEEE Design Automation Conference (DAC), pp. 1–6, June 2015
Dusart, P., Letourneux, G., Vivolo, O.: Differential fault analysis on A.E.S. In: Zhou, J., Yung, M., Han, Y. (eds.) ACNS 2003. LNCS, vol. 2846, pp. 293–306. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45203-4_23
Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption Standard. Springer, Heidelberg (2002). https://doi.org/10.1007/978-3-662-04722-4
El Defrawy, K., Francillon, A., Perito, D., Tsudik, G.: SMART: secure and minimal architecture for (establishing a dynamic) root of trust. In: NDSS: 19th Annual Network and Distributed System Security Symposium, San Diego, USA, 5–8 February 2012 (2012)
Ghosh, S., Chakrabarty, A.: Green energy harvesting from ambient RF radiation. In: 2016 International Conference on Microelectronics, Computing and Communications (MicroCom), pp. 1–4, January 2016
Ghodsi, Z., Garg, S., Karri, R.: Optimal checkpointing for secure intermittently-powered IoT devices. In: 2017 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pp. 376–383, November 2017
Giraud, C.: DFA on AES. In: Dobbertin, H., Rijmen, V., Sowa, A. (eds.) AES 2004. LNCS, vol. 3373, pp. 27–41. Springer, Heidelberg (2005). https://doi.org/10.1007/11506447_4
Habibzadeh, M., Hassanalieragh, M., Ishikawa, A., Soyata, T., Sharma, G.: Hybrid solar-wind energy harvesting for embedded applications: supercapacitor-based system architectures and design tradeoffs. IEEE Circuits Syst. Mag. 17(4), 29–63 (2017)
Hicks, M.: Clank: architectural support for intermittent computation. In: Proceedings of the 44th Annual International Symposium on Computer Architecture, ISCA 2017, pp. 228–240. ACM, New York (2017)
Helfmeier, C., Nedospasov, D., Tarnovsky, C., Krissler, J.S., Boit, C., Seifert, J.-P.: Breaking and entering through the silicon. In: Proceedings of the 2013 ACM SIGSAC Conference on Computer & #38; Communications Security, CCS 2013, pp. 733–744. ACM, New York (2013)
Jokic, P., Magno, M.: Powering smart wearable systems with flexible solar energy harvesting. In: 2017 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1–4, May 2017
Jayakumar, H., Raha, A., Raghunathan, V.: QUICKRECALL: a low overhead HW/SW approach for enabling computations across power cycles in transiently powered computers. In: 2014 27th International Conference on VLSI Design and 2014 13th International Conference on Embedded Systems, pp. 330–335, January 2014
Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1_25
Kim, K., Jeong, G., Jeong, H., Lee, S.: Emerging memory technologies. In: Proceedings of the IEEE 2005 Custom Integrated Circuits Conference, pp. 423–426, September 2005
Kannan, S., Karimi, N., Sinanoglu, O., Karri, R.: Security vulnerabilities of emerging nonvolatile main memories and countermeasures. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 34(1), 2–15 (2015)
Lucia, B., Ransford, B.: A simpler, safer programming and execution model for intermittent systems. In: Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2015, pp. 575–585. ACM, New York (2015)
Mittal, S., Alsalibi, A.I.: A survey of techniques for improving security of non-volatile memories. J. Hardw. Syst. Secur. 2(2), 179–200 (2018)
Navarro, C., et al.: InGaAs capacitor-less DRAM cells TCAD demonstration. IEEE J. Electron Dev. Soc. 6, 884–892 (2018)
Ransford, B., Sorber, J., Kevin, F.: Mementos: system support for long-running computation on RFID-scale devices. SIGARCH Comput. Archit. News 39(1), 159–170 (2011)
Samyde, D., Skorobogatov, S., Anderson, R., Quisquater, J.J.: On a new way to read data from memory. In: Proceedings of First International IEEE Security in Storage Workshop, pp. 65–69, December 2002
Sharad, M., Venkatesan, R., Raghunathan, A., Roy, K.: Multi-level magnetic RAM using domain wall shift for energy-efficient, high-density caches. In: International Symposium on Low Power Electronics and Design (ISLPED), pp. 64–69, September 2013
Texas Instruments: MSP MCU FRAM Utilities (2017)
Texas Instruments: MSP430FR58xx, MSP430FR59xx, MSP430FR68xx, and MSP430FR69xx Family User’s Guide (2017)
Van Der Woude, J., Hicks, M.: Intermittent computation without hardware support or programmer intervention. In: 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 2016), pp. 17–32. USENIX Association, Savannah (2016)
Yang, C.F., Chen, K.H., Chen, Y.C., Chang, T.C.: Fabrication of one-transistor-capacitor structure of nonvolatile TFT Ferroelectric RAM devices using BA(Zr0.1 Ti0.9)O3 gated oxide film. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(9), 1726–1730 (2007)
Yun, S.-N., Ham, Y.-B., Park, J.H.: Energy harvester using PZT actuator with a cantilver. In: 2009 ICCAS-SICE, pp. 5514–5517, August 2009
Acknowledgements
This work was supported in part by NSF grant 1704176 and SRC GRC Task 2712.019.
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
S. Krishnan, A., Schaumont, P. (2018). Exploiting Security Vulnerabilities in Intermittent Computing. In: Chattopadhyay, A., Rebeiro, C., Yarom, Y. (eds) Security, Privacy, and Applied Cryptography Engineering. SPACE 2018. Lecture Notes in Computer Science(), vol 11348. Springer, Cham. https://doi.org/10.1007/978-3-030-05072-6_7
Download citation
DOI: https://doi.org/10.1007/978-3-030-05072-6_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-05071-9
Online ISBN: 978-3-030-05072-6
eBook Packages: Computer ScienceComputer Science (R0)