Abstract
The linear regression, as a classical machine learning algorithm, is often used to be a predictor. In the era of big data, the data owner can outsource their linear regression task and data to the cloud server, which has powerful calculation and storage resources. However, outsourcing data may break the privacy of the data. It is a well-known method to encrypt them prior to uploading to the cloud by using the homomorphic encryption (HE). Nevertheless, it is a difficult problem to apply the linear regression protocol in the encrypted domain. With this observation, we propose an efficient and secure linear regression protocol over outsourced encrypted data by using the vector HE, named ESLR, and in our protocol, we further present a privacy-preserving gradient descent method. Security analysis shows that our protocol can guarantee the confidentiality of data. And compared to the linear regression over plaintexts, our proposal can achieve almost the same accuracy and efficiency over ciphertexts.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Asuncion, A., Newman, D.: UCI machine learning repository (2007)
Ben-David, A., Nisan, N., Pinkas, B.: FairplayMP: a system for securemulti-party computation. In: Proceedings of the 15th ACM Conference on Computer and Communications Security, pp. 257–266. ACM (2008)
Dankar, F.K., El Emam, K.: The application of differential privacy to healthdata. In: Proceedings of the 2012 Joint EDBT/ICDT Workshops, pp. 158–166. ACM (2012)
Centers for Disease Control and Prevention, et al.: HIPAA privacy rule and public health. guidance from CDC and the us department of health and human services. MMWR Morb. Mortal. Wkly. Rep. 52(Suppl. 1), 1–17 (2003)
Du, W., Atallah, M.J.: Secure multi-party computation problems and their applications: a review and open problems. In: Proceedings of the 2001 Workshop on New Security Paradigms, pp. 13–22. ACM (2001)
Dwork, C.: Differential privacy: a survey of results. In: Agrawal, M., Du, D., Duan, Z., Li, A. (eds.) TAMC 2008. LNCS, vol. 4978, pp. 1–19. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-79228-4_1
Dwork, C., Roth, A., et al.: The algorithmic foundations of differential privacy. Found. Trends® Theor. Comput. Sci. 9(3–4), 211–407 (2014)
Fletcher, R., Powell, M.J.: A rapidly convergent descent method for minimization. Comput. J. 6(2), 163–168 (1963)
Goldreich, O.: Secure multi-party computation. Manuscript. Preliminary version, pp. 86–97 (1998)
Halevi, S., Shoup, V.: Helib (2014). Retrieved from HELib: https://github.com.shaih/HElib
Huang, Z.: Extensions to the k-means algorithm for clustering large data sets with categorical values. Data Min. Knowl. Discov. 2(3), 283–304 (1998)
Lee, L.M., Gostin, L.O.: Ethical collection, storage, and use of public health data: a proposal for a national privacy protection. Jama 302(1), 82–84 (2009)
McSherry, F., Talwar, K.: Mechanism design via differential privacy. In: 48th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2007, pp. 94–103. IEEE (2007)
Regev, O.: On lattices, learning with errors, random linear codes, andcryptography. J. ACM 56(6), 1–40 (2009)
van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic encryption over the integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 24–43. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_2
Wold, S., Ruhe, A., Wold, H., Dunn III, W.: The collinearity problem in linear regression. The partial least squares (PLS) approach to generalized inverses. SIAM J. Sci. Stat. Comput. 5(3), 735–743 (1984)
Zhou, H., Wornell, G.: Efficient homomorphic encryption on integer vectors and its applications. In: Information Theory and Applications Workshop (ITA), 2014, pp. 1–9. IEEE (2014)
Acknowledgement
Our work is supported by of the National Key Research and Development Program of China (2017YFB0802003), the National Natural Science Foundation of China (U1633114) and the Sichuan Science and Technology Program (2018GZ0202).
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Yang, H., He, W., Zhou, Q., Li, H. (2018). Efficient and Secure Outsourced Linear Regression. In: Vaidya, J., Li, J. (eds) Algorithms and Architectures for Parallel Processing. ICA3PP 2018. Lecture Notes in Computer Science(), vol 11336. Springer, Cham. https://doi.org/10.1007/978-3-030-05057-3_7
Download citation
DOI: https://doi.org/10.1007/978-3-030-05057-3_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-05056-6
Online ISBN: 978-3-030-05057-3
eBook Packages: Computer ScienceComputer Science (R0)