[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

DISPATCH: An Optimally-Competitive Algorithm for Maximum Online Perfect Bipartite Matching with i.i.d. Arrivals

  • Conference paper
  • First Online:
Approximation and Online Algorithms (WAOA 2018)

Abstract

This work presents an optimally-competitive algorithm for the problem of maximum weighted online perfect bipartite matching with i.i.d. arrivals. In this problem, we are given a known set of workers, a distribution over job types, and non-negative utility weights for each pair of worker and job types. At each time step, a job is drawn i.i.d. from the distribution over job types. Upon arrival, the job must be irrevocably assigned to a worker and cannot be dropped. The goal is to maximize the expected sum of utilities after all jobs are assigned.

We introduce Dispatch, a 0.5-competitive, randomized algorithm. We also prove that 0.5-competitive is the best possible. Dispatch first selects a “preferred worker” and assigns the job to this worker if it is available. The preferred worker is determined based on an optimal solution to a fractional transportation problem. If the preferred worker is not available, Dispatch randomly selects a worker from the available workers. We show that Dispatch maintains a uniform distribution over the workers even when the distribution over the job types is non-uniform.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bansal, N., Buchbinder, N., Gupta, A., Naor, J.S.: An O(log2k)-competitive algorithm for metric bipartite matching. In: Arge, L., Hoffmann, M., Welzl, E. (eds.) ESA 2007. LNCS, vol. 4698, pp. 522–533. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75520-3_47

    Chapter  Google Scholar 

  2. Brubach, B., Sankararaman, K.A., Srinivasan, A., Xu, P.: New algorithms, better bounds, and a novel model for online stochastic matching. In: 24th Annual European Symposium on Algorithms, vol. 57, pp. 24:1–24:16. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2016). https://doi.org/10.4230/LIPIcs.ESA.2016.24

  3. Bubeck, S., Cohen, M.B., Lee, Y.T., Lee, J.R., Madry, A.: K-server via multiscale entropic regularization. In: Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, pp. 3–16. ACM (2018). https://doi.org/10.1145/3188745.3188798

  4. Correa, J., Foncea, P., Hoeksma, R., Oosterwijk, T., Vredeveld, T.: Posted price mechanisms for a random stream of customers. In: Proceedings of the 2017 ACM Conference on Economics and Computation, pp. 169–186. ACM (2017). https://doi.org/10.1145/3033274.3085137

  5. Dehghani, S., Ehsani, S., Hajiaghayi, M., Liaghat, V., Seddighin, S.: Stochastic k-server: how should uber work? In: 44th International Colloquium on Automata, Languages, and Programming, vol. 80, pp. 126:1–126:14. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2017)

    Google Scholar 

  6. Feldman, J., Korula, N., Mirrokni, V., Muthukrishnan, S., Pál, M.: Online ad assignment with free disposal. In: Leonardi, S. (ed.) WINE 2009. LNCS, vol. 5929, pp. 374–385. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10841-9_34

    Chapter  Google Scholar 

  7. Feldman, J., Mehta, A., Mirrokni, V., Muthukrishnan, S.: Online stochastic matching: Beating 1–1/e. In: 50th Annual IEEE Symposium on Foundations of Computer Science, pp. 117–126. IEEE (2009). https://doi.org/10.1109/FOCS.2009.72

  8. Haeupler, B., Mirrokni, V.S., Zadimoghaddam, M.: Online stochastic weighted matching: improved approximation algorithms. In: Chen, N., Elkind, E., Koutsoupias, E. (eds.) WINE 2011. LNCS, vol. 7090, pp. 170–181. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25510-6_15

    Chapter  Google Scholar 

  9. Kalyanasundaram, B., Pruhs, K.: Online weighted matching. J. Algorithms 14(3), 478–488 (1993). https://doi.org/10.1006/jagm.1993.1026

    Article  MathSciNet  MATH  Google Scholar 

  10. Karp, R.M., Vazirani, U.V., Vazirani, V.V.: An optimal algorithm for on-line bipartite matching. In: Proceedings of the 22nd Annual ACM Symposium on Theory of Computing, pp. 352–358. ACM (1990). https://doi.org/10.1145/100216.100262

  11. Kesselheim, T., Radke, K., Tönnis, A., Vöcking, B.: An optimal online algorithm for weighted bipartite matching and extensions to combinatorial auctions. In: Bodlaender, H.L., Italiano, G.F. (eds.) ESA 2013. LNCS, vol. 8125, pp. 589–600. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40450-4_50

    Chapter  Google Scholar 

  12. Khuller, S., Mitchell, S.G., Vazirani, V.V.: On-line algorithms for weighted bipartite matching and stable marriages. Theor. Comput. Sci. 127(2), 255–267 (1994). https://doi.org/10.1016/0304-3975(94)90042-6

    Article  MathSciNet  MATH  Google Scholar 

  13. Koutsoupias, E.: The k-server problem. Compu. Sci. Rev. 3(2), 105–118 (2009). https://doi.org/10.1016/j.cosrev.2009.04.002

    Article  MATH  Google Scholar 

  14. Mahdian, M., Yan, Q.: Online bipartite matching with random arrivals: an approach based on strongly factor-revealing LPs. In: Proceedings of the 43rd Annual ACM Symposium on Theory of Computing, pp. 597–606. ACM (2011). https://doi.org/10.1145/1993636.1993716

  15. Manasse, M.S., McGeoch, L.A., Sleator, D.D.: Competitive algorithms for server problems. J. Algorithms 11(2), 208–230 (1990). https://doi.org/10.1016/0196-6774(90)90003-W

    Article  MathSciNet  MATH  Google Scholar 

  16. Manshadi, V.H., Gharan, S.O., Saberi, A.: Online stochastic matching: online actions based on offline statistics. Math. Oper. Res. 37(4), 559–573 (2012). https://doi.org/10.1287/moor.1120.0551

    Article  MathSciNet  MATH  Google Scholar 

  17. Mehta, A., et al.: Online matching and ad allocation. Found. Trends Theor. Comput. Sci. 8(4), 265–368 (2013). https://doi.org/10.1561/0400000057

    Article  MathSciNet  MATH  Google Scholar 

  18. Meyerson, A., Nanavati, A., Poplawski, L.: Randomized online algorithms for minimum metric bipartite matching. In: Proceedings of the 17th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 954–959. Society for Industrial and Applied Mathematics (2006)

    Google Scholar 

  19. Raghvendra, S.: A robust and optimal online algorithm for minimum metric bipartite matching. In: Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, vol. 60, pp. 18:1–18:16. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2016). https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2016.18

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Quico Spaen or Mark Velednitsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chang, M., Hochbaum, D.S., Spaen, Q., Velednitsky, M. (2018). DISPATCH: An Optimally-Competitive Algorithm for Maximum Online Perfect Bipartite Matching with i.i.d. Arrivals. In: Epstein, L., Erlebach, T. (eds) Approximation and Online Algorithms. WAOA 2018. Lecture Notes in Computer Science(), vol 11312. Springer, Cham. https://doi.org/10.1007/978-3-030-04693-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04693-4_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04692-7

  • Online ISBN: 978-3-030-04693-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics