[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

ReMoVES Remote Monitoring Validation Engineering System: New Way of Care

  • Conference paper
  • First Online:
Ambient Assisted Living (ForItAAL 2017)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 540))

Included in the following conference series:

  • 502 Accesses

Abstract

Customization of the rehabilitation program and patient monitoring involve gathering user and process-related information during the rehabilitation, which is then used to appropriately adapt procedures and services in order to satisfactorily enhance the user’s experience. User satisfaction is the ultimate aim of customization along with clinical effectiveness. Case-based reasoning will help in further improving the rehabilitation process by either exploiting temporal profile evolution of the same patient or retrieving and processing information related to similar patients. To this end, thinking to a personalized and remote monitoring service available at patient’s home could be a solution to extend the possibility of treatment to a wider population, in an easy and comfortable way, at a good price. The aim of this study is to present REmote MOnitoring Validation Engineering System (ReMoVES) platform: the proposed system addresses the problem of continuity of care in a smart and economical way within the rehabilitation field. The proposed solution has been favourably accepted by patients, who showed interest and involvement during tests conducted at rehabilitation facilities, as well as by therapists who have found ReMoVES a useful tool for assessing and monitoring the patient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 103.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
GBP 129.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Maule, J., & Chestnutt, L. (1999). Telemedicine in the 21st Century: Opportunities for Citizens, Society and Industry: An International Space University Workshop, November 4–5, 1999, Hilton Hotel, Strasbourg, France

    Google Scholar 

  2. Ferrara, E., Nardotto, S., Ponte, S., & Dellepiane, S. G. (2014). Infrastructure for data management and user centered rehabilitation in Rehab@Home project. In Proceedings of the 7th International Conference on PErvasive Technologies Related to Assistive Environments (Vol. 21). ACM

    Google Scholar 

  3. Deutsch, J. E., Brettler, A., Smith, C., Welsh, J., John, R., Guarrera-Bowlby, P., et al. (2011). Nintendo Wii sports and Wii fit game analysis, validation, and application to stroke rehabilitation. Topics in Stroke Rehabilitation, 18(6), 701–719.

    Article  Google Scholar 

  4. Stroke Engine. Heart & Stroke Foundation, Canadian Partnership for Stroke Recovery. Retrieved October 23, 2017, from https://www.strokengine.ca/en/about-stroke-engine/.

  5. Sin, H., & Lee, G. (2013). Additional virtual reality training using xbox kinect in stroke survivors with hemiplegia. American Journal of Physical Medicine & Rehabilitation, 92(10), 871–880.

    Article  Google Scholar 

  6. Fritz, S. L., Peters, D. M., Merlo, A. M., & Donley, J. (2013). Active video-gaming effects on balance and mobility in individuals with chronic stroke: A randomized controlled trial. Topics in Stroke Rehabilitation, 20(3), 218–225.

    Article  Google Scholar 

  7. Webster, D., & Celik, O. (2014). Systematic review of kinect applications in elderly care and stroke rehabilitation. Journal of Neuroengineering and Rehabilitation, 11(1), 108.

    Article  Google Scholar 

  8. ReMoVES Official Website. Solution for home rehabilitation and monitoring. Retrieved October 23, 2017, from https://www.removes.eu.

  9. Ponte, S., Gabrielli, S., Jonsdottir, J., Morando, M., & Dellepiane, S. (2015). Monitoring game-based motor rehabilitation of patients at home for better plans of care and quality of life. In 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2015 (pp. 3941–3944). IEEE.

    Google Scholar 

  10. Flores, E., Tobon, G., Cavallaro, E., Cavallaro, F. I., Perry, J. C., & Keller, T. (2008). Improving patient motivation in game development for motor deficit rehabilitation. In Proceedings of the 2008 International Conference on Advances in Computer Entertainment Technology (pp. 381–384). ACM.

    Google Scholar 

  11. Gardner, M., Metsis, V., Becker, E., & Makedon, F. (2013). Modeling the effect of attention deficit in game-based motor ability assessment of cerebral palsy patients. In Proceedings of the 6th International Conference on PErvasive Technologies Related to Assistive Environments (Vol. 65). ACM.

    Google Scholar 

  12. Laver, K., George, S., Thomas, S., Deutsch, J. E., & Crotty, M. (2012). Virtual reality for stroke rehabilitation. Stroke, 43(2), e20–e21.

    Article  Google Scholar 

  13. Saposnik, G., Teasell, R., Mamdani, M., Hall, J., McIlroy, W., Cheung, D., et al. (2010). Effectiveness of virtual reality using Wii gaming technology in stroke rehabilitation. Stroke, 41(7), 1477–1484.

    Article  Google Scholar 

  14. Drachen, A., Nacke, L. E., Yannakakis, G., & Pedersen, A. L. (2010). Correlation between heart rate, electrodermal activity and player experience in first-person shooter games. In Proceedings of the 5th ACM SIGGRAPH Symposium on Video Games (pp. 49–54). ACM.

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dott.ssa Marina Simonini (La Colletta Hospital (Arenzano–Genova)), Dott.ssa Francesca Cecchi (Don Carlo Gnocchi Foundation (Fivizzano–Massa Carrara), and the medical and physiotherapist staff for supporting the experimental procedures and patients recruitment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvana Dellepiane .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ferrara, E., Ponte, S., Morando, M., Dellepiane, S. (2019). ReMoVES Remote Monitoring Validation Engineering System: New Way of Care. In: Casiddu, N., Porfirione, C., Monteriù, A., Cavallo, F. (eds) Ambient Assisted Living. ForItAAL 2017. Lecture Notes in Electrical Engineering, vol 540. Springer, Cham. https://doi.org/10.1007/978-3-030-04672-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04672-9_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04671-2

  • Online ISBN: 978-3-030-04672-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics