[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Making Multiple RNA Interaction Practical

  • Conference paper
  • First Online:
Combinatorial Optimization and Applications (COCOA 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11346))

Abstract

Multiple RNA interaction can be modeled as a problem in combinatorial optimization, where the “optimal” structure is driven by an energy-minimization-like algorithm. However, the actual structure may not be optimal in this computational sense. Moreover, it is not necessarily unique. Therefore, alternative sub-optimal solutions are needed to cover the biological ground.

We extend a recent combinatorial formulation for the Multiple RNA Interaction problem with approximation algorithms to handle more elaborate interaction patterns, which when combined with Gibbs sampling and MCMC (Markov Chain Monte Carlo), can efficiently generate a reasonable number of optimal and sub-optimal solutions. When viable structures are far from an optimal solution, exploring dependence among different parts of the interaction can increase their score and boost their candidacy for the sampling algorithm. By clustering the solutions, we identify few representatives that are distinct enough to suggest possible alternative structures.

Supported by a Research Starter Award in Informatics from the PhRMA Foundation www.phrmafoundation.org.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Circular interactions with odd cycles (where the interaction graph G is not restricted to being bipartite) can be achieved by allowing inverted windows in which the interaction given by \(w(l_1,l_2,i,j,u,v)\) occurs between bases \([i-u+1,i]\) on RNA \(l_1\) and bases \([j,j-v+1]\) (inverted sequence) on RNA \(l_2\), but we do not explore this direction here.

  2. 2.

    For ease of notation, we are thinking of \(A_l\) as a sequence and a set at the same time.

  3. 3.

    We use “first representative” because many solutions can represent the same candidate; for instance, a window can split in different ways, but we still refer to it as a window split.

  4. 4.

    Since a single non-symmetric window may also represent a split, our percentage hit for window splits is lower than it should be with the no filtering option.

References

  1. Ahmed, S.A., Mneimneh, S.: Multiple RNA interaction with sub-optimal solutions. In: Basu, M., Pan, Y., Wang, J. (eds.) ISBRA 2014. LNCS, vol. 8492, pp. 149–162. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08171-7_14

    Chapter  Google Scholar 

  2. Ahmed, S.A., Mneimneh, S., Greenbaum, N.L.: A combinatorial approach for multiple RNA interaction: formulations, approximations, and heuristics. In: Du, D.-Z., Zhang, G. (eds.) COCOON 2013. LNCS, vol. 7936, pp. 421–433. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38768-5_38

    Chapter  MATH  Google Scholar 

  3. Alkan, C., Karakoc, E., Nadeau, J.H., Sahinalp, S.C., Zhang, K.: RNA-RNA interaction prediction and antisense RNA target search. J. Comput. Biol. 13(2), 267–282 (2006)

    Article  MathSciNet  Google Scholar 

  4. Alkan, F., et al.: RIsearch2: suffix array-based large-scale prediction of RNA-RNA interactions and siRNA off-targets. Nucleic Acids Res. 45(8), e60 (2017)

    Google Scholar 

  5. Andronescu, M., Zhang, Z.C., Condon, A.: Secondary structure prediction of interacting RNA molecules. J. Mol. Biol. 345(5), 987–1001 (2005)

    Article  Google Scholar 

  6. Antonov, I., Marakhonov, A., Zamkova, M., Medvedeva, Y.: ASSA: fast identification of statistically significant interactions between long RNAs. J. Bioinform. Comput. Biol. 16(01), 1840001 (2018)

    Article  Google Scholar 

  7. Cao, S., Chen, S.-J.: Free energy landscapes of RNA/RNA complexes: with applications to snRNA complexes in spliceosomes. J. Mol. Biol. 357(1), 292–312 (2006)

    Article  Google Scholar 

  8. Chekuri, C., Kumar, A.: Maximum coverage problem with group budget constraints and applications. In: Jansen, K., Khanna, S., Rolim, J.D.P., Ron, D. (eds.) APPROX/RANDOM - 2004. LNCS, vol. 3122, pp. 72–83. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27821-4_7

    Chapter  MATH  Google Scholar 

  9. Chen, H.-L., Condon, A., Jabbari, H.: An \(o(n^5)\) algorithm for MFE prediction of kissing hairpins and 4-chains in nucleic acids. J. Comput. Biol. 16(6), 803–815 (2009)

    Article  MathSciNet  Google Scholar 

  10. Chitsaz, H., Backofen, R., Sahinalp, S.C.: biRNA: fast RNA-RNA binding sites prediction. In: Salzberg, S.L., Warnow, T. (eds.) WABI 2009. LNCS, vol. 5724, pp. 25–36. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04241-6_3

    Chapter  Google Scholar 

  11. Chitsaz, H., Salari, R., Sahinalp, S.C., Backofen, R.: A partition function algorithm for interacting nucleic acid strands. Bioinformatics 25(12), i365–i373 (2009)

    Article  Google Scholar 

  12. Ding, Y., Lawrence, C.E.: A statistical sampling algorithm for RNA secondary structure prediction. Nucleic Acids Res. 31(24), 7280–7301 (2003)

    Article  Google Scholar 

  13. Dirks, R.M., Bois, J.S., Schaeffer, J.M., Winfree, E., Pierce, N.A.: Thermodynamic analysis of interacting nucleic acid strands. SIAM Rev. 49(1), 65–88 (2007)

    Article  MathSciNet  Google Scholar 

  14. Durbin, R., Eddy, S.R., Krogh, A., Mitchison, G.: Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids, Chap. 11. Cambridge University Press, Cambridge (1998)

    Google Scholar 

  15. Fukunaga, T., Hamada, M.: RIblast: an ultrafast RNA-RNA interaction prediction system based on a seed-and-extension approach. Bioinformatics 33(17), 2666–2674 (2017)

    Article  Google Scholar 

  16. Gallager, R.G.: Discrete Stochastic Processes, Chap. 4. SECS, vol. 321. Springer, Boston (2012). https://doi.org/10.1007/978-1-4615-2329-1

    Book  Google Scholar 

  17. Geman, S., Geman, D.: Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. 6, 721–741 (1984)

    Article  Google Scholar 

  18. Hastings, W.K.: Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57(1), 97–109 (1970)

    Article  MathSciNet  Google Scholar 

  19. Huang, F.W., Qin, J., Reidys, C.M., Stadler, P.F.: Partition function and base pairing probabilities for RNA-RNA interaction prediction. Bioinformatics 25(20), 2646–2654 (2009)

    Article  Google Scholar 

  20. Huang, F.W., Qin, J., Reidys, C.M., Stadler, P.F.: Target prediction and a statistical sampling algorithm for RNA-RNA interaction. Bioinformatics 26(2), 175–181 (2010)

    Article  Google Scholar 

  21. Jaccard, P.: Etude comparative de la distribution florale dans une portion des Alpes et du Jura. Impr, Corbaz (1901)

    Google Scholar 

  22. Jankowsky, E., Schwenzer, B.: Oligonucleotide facilitators may inhibit or activate a hammerhead ribozyme. Nucleic Acids Res. 24(3), 423–429 (1996)

    Article  Google Scholar 

  23. Jiang, T., Li, M.: On the approximation of shortest common supersequences and longest common subsequences. SIAM J. Comput. 24(5), 1122–1139 (1995)

    Article  MathSciNet  Google Scholar 

  24. Kolb, F.A., et al.: Progression of a loop-loop complex to a four-way junction is crucial for the activity of a regulatory antisense RNA. EMBO J. 19(21), 5905–5915 (2000)

    Article  Google Scholar 

  25. Kolb, F.A., et al.: An unusual structure formed by antisense-target RNA binding involves an extended kissing complex with a four-way junction and a side-by-side helical alignment. RNA 6(3), 311–324 (2000)

    Article  Google Scholar 

  26. Li, A.X., Marz, M., Qin, J., Reidys, C.M.: RNA-RNA interaction prediction based on multiple sequence alignments. Bioinformatics 27(4), 456–463 (2011)

    Article  Google Scholar 

  27. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equation of state calculations by fast computing machines. J. Chem. Phys. 21(6), 1087–1092 (1953)

    Article  Google Scholar 

  28. Metzler, D., Nebel, M.E.: Predicting RNA secondary structures with pseudoknots by MCMC sampling. J. Math. Biol. 56(1–2), 161–181 (2008)

    MathSciNet  MATH  Google Scholar 

  29. Meyer, I.M.: Predicting novel RNA-RNA interactions. Curr. Opin. Struct. Biol. 18(3), 387–393 (2008)

    Article  MathSciNet  Google Scholar 

  30. Mneimneh, S.: On the approximation of optimal structures for RNA-RNA interaction. IEEE/ACM Trans. Comput. Biol. Bioinform. (TCBB) 6(4), 682–688 (2009)

    Article  MathSciNet  Google Scholar 

  31. Mneimneh, S., Ahmed, S.A.: Multiple RNA interaction: beyond two. IEEE Trans. Nanobiosci. 14(2), 210–219 (2015)

    Article  Google Scholar 

  32. Mneimneh, S., Ahmed, S.A.: Gibbs/MCMC sampling for multiple RNA interaction with sub-optimal solutions. In: Botón-Fernández, M., Martín-Vide, C., Santander-Jiménez, S., Vega-Rodríguez, M. (eds.) AlCoB 2016. LNCS, vol. 9702, pp. 78–90. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-38827-4_7

    Chapter  MATH  Google Scholar 

  33. Mückstein, U., Tafer, H., Hackermüller, J., Bernhart, S.H., Stadler, P.F., Hofacker, I.L.: Thermodynamics of RNA-RNA binding. Bioinformatics 22(10), 1177–1182 (2006)

    Article  Google Scholar 

  34. Newby, M.I., Greenbaum, N.L.: A conserved pseudouridine modification in eukaryotic U2 snRNA induces a change in branch-site architecture. RNA 7(06), 833–845 (2001)

    Article  Google Scholar 

  35. Pervouchine, D.D.: IRIS: intermolecular RNA interaction search. Genome Inform. Ser. 15(2), 92 (2004)

    MathSciNet  Google Scholar 

  36. Pinard, R., et al.: Functional involvement of G8 in the hairpin ribozyme cleavage mechanism. EMBO J. 20(22), 6434–6442 (2001)

    Article  Google Scholar 

  37. Salari, R., Backofen, R., Sahinalp, S.C.: Fast prediction of RNA-RNA interaction. Algorithms Mol. Biol. 5(5), 5 (2010)

    Article  Google Scholar 

  38. Sashital, D.G., Cornilescu, G., Butcher, S.E.: U2–U6 RNA folding reveals a group II intron-like domain and a four-helix junction. Nat. Struct. Mol. Biol. 11(12), 1237–1242 (2004)

    Article  Google Scholar 

  39. Schmidt, C., Welz, R., Müller, S.: RNA double cleavage by a hairpin-derived twin ribozyme. Nucleic Acids Res. 28(4), 886–894 (2000)

    Article  Google Scholar 

  40. Sun, J.-S., Manley, J.L.: A novel U2–U6 snRNA structure is necessary for mammalian mRNA splicing. Genes Dev. 9(7), 843–854 (1995)

    Article  Google Scholar 

  41. Tong, W., Goebel, R., Liu, T., Lin, G.: Approximating the maximum multiple RNA interaction problem. Theoret. Comput. Sci. 556, 63–70 (2014)

    Article  MathSciNet  Google Scholar 

  42. Wei, D., Alpert, L.V., Lawrence, C.E.: RNAG: a new Gibbs sampler for predicting RNA secondary structure for unaligned sequences. Bioinformatics 27(18), 2486–2493 (2011)

    Article  Google Scholar 

  43. Zhao, C., et al.: Conformational heterogeneity of the protein-free human spliceosomal U2–U6 snRNA complex. RNA 19(4), 561–573 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saad Mneimneh .

Editor information

Editors and Affiliations

Appendix

Appendix

Given a solution S, define |S| as the number of windows in S, and let

$$w(l_1, l_1',i_1, j_1, u_1, v_1), \ldots , w(l_{|S|}, l_{|S|}', i_{|S|}, j_{|S|}, u_{|S|}, v_{|S|})$$

be the |S| windows in the order defined by the partial order relation follow (from Sect. 2) extended to a total order in a deterministic way.

Each of these windows, say \(w(l, l', i, j, u, v)\), defines the two intervals, \([i-u+1,i]\) in level l and \([j-v+1,j]\) in level \(l'\). Consider the set of interaction intervals \(I(S)=\sum _l I_l(S)\) to be ordered accordingly. Therefore,

$$I(S)=\{I_1,\ldots , I_{2|S|}\} =([i_1-u_1+1, i_1], [j_1-v_1+1, j_1],\ldots $$
$$ \ldots ,[i_{|S|}-u_{|S|}+1, i_{|S|}], [j_{|S|}-v_{|S|}+1,j_{|S|}])$$

is an ordered set of 2|S| intervals. Let \(L(S)=\{(l_1,l_1'),\ldots ,(l_{|S|},l_{|S|}')\}\) be an ordered set of |S| pairs, where \((l_i,l_i')\) is the pair defining the \(i^{\text {th}}\) window. Therefore, L(S) means that we have the following set of pairwise interactions (not necessarily unique in terms of RNAs): RNA \(l_1\) with RNA \(l_1'\), RNA \(l_2\) with RNA \(l_2'\), \(\ldots \), RNA \(l_{|S|}\) with RNA \(l_{|S|}'\). Two solutions that do not agree on this set are considered completely dissimilar; otherwise, their distance is given by the amount of overlap in their interaction intervals (as in the Jaccard metric [21]), hence the following definition of distance:

Given two solutions \(S_1\) with \(I(S_1)=\{I_1,I_2,\ldots \}\) and \(S_2\) with \(I(S_2)=\{T_1,T_2,\ldots \}\), the distance between \(S_1\) and \(S_2\) is

$$d(S_1,S_2)=\left\{ \begin{array}{ccl} 1-\frac{\sum _i |I_i\cap T_i|}{\sum _i |I_i\cup T_i|} &{}\ \ \ &{} L(S_1)=L(S_2)\\ 1 &{}\ \ \ &{} \text {otherwise} \end{array} \right. $$

where \(\cap \) and \(\cup \) represent the standard intersection and union operations on sets respectively, and intervals are treated as sets of integers.

Recall that a symmetric window \(w(l_1,l_2,i,j,u,v)\) satisfies \(u=v\) (and typically consists of u base pairs). When applying the distance function, a non-symmetric window is first converted to consecutive symmetric windows by maximizing the number of base pairs (but otherwise is still reported as a non-symmetric window in a given solution).

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ahmed, S.A., Farhat, S., Mneimneh, S. (2018). Making Multiple RNA Interaction Practical. In: Kim, D., Uma, R., Zelikovsky, A. (eds) Combinatorial Optimization and Applications. COCOA 2018. Lecture Notes in Computer Science(), vol 11346. Springer, Cham. https://doi.org/10.1007/978-3-030-04651-4_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04651-4_44

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04650-7

  • Online ISBN: 978-3-030-04651-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics