Abstract
Predicting the concentration of air pollution particles has been an important task of urban computing. Accurately measuring and estimating makes the citizen and governments can behave with suitable decisions. In order to predict the concentration of several air pollutants at multiple monitoring stations throughout the city region, we proposed a novel deep multi-task learning framework based on residual Gated Recurrent Unit (GRU). The experimental results on the real world data from London region substantiate that the proposed deep model has manifest superiority than shallow models and outperforms 9 baselines.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Akimoto, H.: Global air quality and pollution. Science 302(5651), 1716–1719 (2003)
Ghaderi, A., Sanandaji, B.M., Ghaderi, F.: Deep forecast: deep learning-based spatio-temporal forecasting. arXiv preprint arXiv:1707.08110 (2017)
He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: European Conference on Computer Vision, pp. 630–645 (2016)
Kampa, M., Castanas, E.: Human health effects of air pollution. Environ. Pollut. 151(2), 362–367 (2008)
Ke, J., Zheng, H., Yang, H., Chen, X.M.: Short-term forecasting of passenger demand under on-demand ride services: a spatio-temporal deep learning approach. Transp. Res. Part C: Emerg. Technol. 85, 591–608 (2017)
Kök, I., Şimşek, M.U., Özdemir, S.: A deep learning model for air quality prediction in smart cities. In: 2017 IEEE International Conference on Big Data (Big Data), pp. 1983–1990, December 2017
Li, X., Peng, L., Hu, Y., Shao, J., Chi, T.: Deep learning architecture for air quality predictions. Environ. Sci. Pollut. Res. 23(22), 22408–22417 (2016)
Liang, Y., Ke, S., Zhang, J., Yi, X., Zheng, Y.: GeoMAN. In: International Joint Conference on Artificial Intelligence (IJCAI-18) (2018)
Ma, X., Dai, Z., He, Z., Ma, J., Wang, Y., Wang, Y.: Learning traffic as images: a deep convolutional neural network for large-scale transportation network speed prediction. Sensors 17(4), 818 (2017)
Wang, B., Yin, P., Bertozzi, A.L., Brantingham, P.J., Osher, S.J., Xin, J.: Deep learning for real-time crime forecasting and its ternarization. arXiv preprint arXiv:1711.08833 (2017)
Wu, Y., Tan, H.: Short-term traffic flow forecasting with spatial-temporal correlation in a hybrid deep learning framework. arXiv preprint arXiv:1612.01022 (2016)
Xingjian, S., Chen, Z., Wang, H., Yeung, D.Y., Wong, W.K., Woo, W.C.: Convolutional LSTM network: a machine learning approach for precipitation nowcasting. In: Advances in Neural Information Processing Systems, pp. 802–810 (2015)
Yao, H., et al.: Deep multi-view spatial-temporal network for taxi demand prediction. arXiv preprint arXiv:1802.08714 (2018)
Yi, X., Zhang, J., Wang, Z., Li, T., Zheng, Y.: Deep distributed fusion network for air quality prediction. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM (2018)
Zhang, J., Zheng, Y., Qi, D.: Deep spatio-temporal residual networks for citywide crowd flows prediction. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp. 1655–1661 (2017)
Zhang, J., Zheng, Y., Qi, D., Li, R., Yi, X.: DNN-based prediction model for spatio-temporal data. In: Proceedings of the International Conference on Advances in Geographic Information Systems, p. 92 (2016)
Zhang, Y., Bocquet, M., Mallet, V., Seigneur, C., Baklanov, A.: Real-time air quality forecasting, Part I: history, techniques, and current status. Atmos. Environ. 60, 632–655 (2012)
Zhang, Y., Bocquet, M., Mallet, V., Seigneur, C., Baklanov, A.: Real-time air quality forecasting, Part II: state of the science, current research needs, and future prospects. Atmos. Environ. 60, 656–676 (2012)
Zheng, Y., Liu, F., Hsieh, H.P.: U-Air: when urban air quality inference meets big data. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2013, pp. 1436–1444. ACM (2013)
Zheng, Y., et al.: Forecasting fine-grained air quality based on big data. In: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2015, pp. 2267–2276. ACM (2015)
Acknowledgment
This work was supported by the Natural Science Foundation of China (No. 61773324), the Fundamental Research Funds for the Central Universities (No. 2682015QM02) and the Australian Research Council (No. DP150101645).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Wang, B., Yan, Z., Lu, J., Zhang, G., Li, T. (2018). Deep Multi-task Learning for Air Quality Prediction. In: Cheng, L., Leung, A., Ozawa, S. (eds) Neural Information Processing. ICONIP 2018. Lecture Notes in Computer Science(), vol 11305. Springer, Cham. https://doi.org/10.1007/978-3-030-04221-9_9
Download citation
DOI: https://doi.org/10.1007/978-3-030-04221-9_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-04220-2
Online ISBN: 978-3-030-04221-9
eBook Packages: Computer ScienceComputer Science (R0)