[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Deep Multi-task Learning for Air Quality Prediction

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11305))

Included in the following conference series:

  • 3164 Accesses

Abstract

Predicting the concentration of air pollution particles has been an important task of urban computing. Accurately measuring and estimating makes the citizen and governments can behave with suitable decisions. In order to predict the concentration of several air pollutants at multiple monitoring stations throughout the city region, we proposed a novel deep multi-task learning framework based on residual Gated Recurrent Unit (GRU). The experimental results on the real world data from London region substantiate that the proposed deep model has manifest superiority than shallow models and outperforms 9 baselines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Akimoto, H.: Global air quality and pollution. Science 302(5651), 1716–1719 (2003)

    Article  Google Scholar 

  2. Ghaderi, A., Sanandaji, B.M., Ghaderi, F.: Deep forecast: deep learning-based spatio-temporal forecasting. arXiv preprint arXiv:1707.08110 (2017)

  3. He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: European Conference on Computer Vision, pp. 630–645 (2016)

    Chapter  Google Scholar 

  4. Kampa, M., Castanas, E.: Human health effects of air pollution. Environ. Pollut. 151(2), 362–367 (2008)

    Article  Google Scholar 

  5. Ke, J., Zheng, H., Yang, H., Chen, X.M.: Short-term forecasting of passenger demand under on-demand ride services: a spatio-temporal deep learning approach. Transp. Res. Part C: Emerg. Technol. 85, 591–608 (2017)

    Article  Google Scholar 

  6. Kök, I., Şimşek, M.U., Özdemir, S.: A deep learning model for air quality prediction in smart cities. In: 2017 IEEE International Conference on Big Data (Big Data), pp. 1983–1990, December 2017

    Google Scholar 

  7. Li, X., Peng, L., Hu, Y., Shao, J., Chi, T.: Deep learning architecture for air quality predictions. Environ. Sci. Pollut. Res. 23(22), 22408–22417 (2016)

    Article  Google Scholar 

  8. Liang, Y., Ke, S., Zhang, J., Yi, X., Zheng, Y.: GeoMAN. In: International Joint Conference on Artificial Intelligence (IJCAI-18) (2018)

    Google Scholar 

  9. Ma, X., Dai, Z., He, Z., Ma, J., Wang, Y., Wang, Y.: Learning traffic as images: a deep convolutional neural network for large-scale transportation network speed prediction. Sensors 17(4), 818 (2017)

    Article  Google Scholar 

  10. Wang, B., Yin, P., Bertozzi, A.L., Brantingham, P.J., Osher, S.J., Xin, J.: Deep learning for real-time crime forecasting and its ternarization. arXiv preprint arXiv:1711.08833 (2017)

  11. Wu, Y., Tan, H.: Short-term traffic flow forecasting with spatial-temporal correlation in a hybrid deep learning framework. arXiv preprint arXiv:1612.01022 (2016)

  12. Xingjian, S., Chen, Z., Wang, H., Yeung, D.Y., Wong, W.K., Woo, W.C.: Convolutional LSTM network: a machine learning approach for precipitation nowcasting. In: Advances in Neural Information Processing Systems, pp. 802–810 (2015)

    Google Scholar 

  13. Yao, H., et al.: Deep multi-view spatial-temporal network for taxi demand prediction. arXiv preprint arXiv:1802.08714 (2018)

  14. Yi, X., Zhang, J., Wang, Z., Li, T., Zheng, Y.: Deep distributed fusion network for air quality prediction. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM (2018)

    Google Scholar 

  15. Zhang, J., Zheng, Y., Qi, D.: Deep spatio-temporal residual networks for citywide crowd flows prediction. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp. 1655–1661 (2017)

    Google Scholar 

  16. Zhang, J., Zheng, Y., Qi, D., Li, R., Yi, X.: DNN-based prediction model for spatio-temporal data. In: Proceedings of the International Conference on Advances in Geographic Information Systems, p. 92 (2016)

    Google Scholar 

  17. Zhang, Y., Bocquet, M., Mallet, V., Seigneur, C., Baklanov, A.: Real-time air quality forecasting, Part I: history, techniques, and current status. Atmos. Environ. 60, 632–655 (2012)

    Article  Google Scholar 

  18. Zhang, Y., Bocquet, M., Mallet, V., Seigneur, C., Baklanov, A.: Real-time air quality forecasting, Part II: state of the science, current research needs, and future prospects. Atmos. Environ. 60, 656–676 (2012)

    Article  Google Scholar 

  19. Zheng, Y., Liu, F., Hsieh, H.P.: U-Air: when urban air quality inference meets big data. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2013, pp. 1436–1444. ACM (2013)

    Google Scholar 

  20. Zheng, Y., et al.: Forecasting fine-grained air quality based on big data. In: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2015, pp. 2267–2276. ACM (2015)

    Google Scholar 

Download references

Acknowledgment

This work was supported by the Natural Science Foundation of China (No. 61773324), the Fundamental Research Funds for the Central Universities (No. 2682015QM02) and the Australian Research Council (No. DP150101645).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, B., Yan, Z., Lu, J., Zhang, G., Li, T. (2018). Deep Multi-task Learning for Air Quality Prediction. In: Cheng, L., Leung, A., Ozawa, S. (eds) Neural Information Processing. ICONIP 2018. Lecture Notes in Computer Science(), vol 11305. Springer, Cham. https://doi.org/10.1007/978-3-030-04221-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04221-9_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04220-2

  • Online ISBN: 978-3-030-04221-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics