[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Least Squares Approach to Region Selection

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11305))

Included in the following conference series:

  • 2604 Accesses

Abstract

Region selection is able to boost the recognition performance for images with background clutter by discovering the object regions. In this paper, we propose a region selection method under the least squares framework. With the assumption that an object is a combination of several over-segmented regions, we impose a selection variable on each region, and employ a linear model to perform classification. The model parameter and the selection parameter are alternatively updated to minimize a sum-of-squares error function. During the iteration, the selection parameter can automatically pick the discriminant regions accounting for the object category, then fine tunes the linear model with the objects, independently of the background. As a result, the learnt model is able to distinguish object regions and non-object regions, which actually generates irregular-shape object localization. Our method performs significantly better than the baselines on two datasets, and the performance can be further improved when combining deep CNN features. Moreover, the algorithm is easy to implement and computationally efficient because of the merits inherited from the least squares.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The code will be published with the article.

References

  1. Andrews, S., Tsochantaridis, I., Hofmann, T.: Support vector machines for multiple-instance learning. In: Advances in Neural Information Processing Systems, pp. 561–568 (2002)

    Google Scholar 

  2. Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 33(5), 898–916 (2011)

    Article  Google Scholar 

  3. Behmo, R., Marcombes, P., Dalalyan, A., Prinet, V.: Towards optimal naive bayes nearest neighbor. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6314, pp. 171–184. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15561-1_13

    Chapter  Google Scholar 

  4. Chatfield, K., Simonyan, K., Vedaldi, A., Zisserman, A.: Return of the devil in the details: delving deep into convolutional nets. In: British Machine Vision Conference, BMVC 2014, Nottingham, UK, 1–5 September 2014 (2014)

    Google Scholar 

  5. Chen, Q., Song, Z., Dong, J., Huang, Z., Hua, Y., Yan, S.: Contextualizing object detection and classification. IEEE Trans. Pattern Anal. Mach. Intell. 37(1), 13–27 (2015)

    Article  Google Scholar 

  6. Deselaers, T., Alexe, B., Ferrari, V.: Localizing objects while learning their appearance. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6314, pp. 452–466. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15561-1_33

    Chapter  Google Scholar 

  7. Farabet, C., Couprie, C., Najman, L., LeCun, Y.: Learning hierarchical features for scene labeling. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1915–1929 (2013)

    Article  Google Scholar 

  8. Hariharan, B., Arbeláez, P., Girshick, R., Malik, J.: Simultaneous detection and segmentation. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8695, pp. 297–312. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10584-0_20

    Chapter  Google Scholar 

  9. Hariharan, B., Arbeláez, P.A., Girshick, R.B., Malik, J.: Hypercolumns for object segmentation and fine-grained localization. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015, Boston, MA, USA, 7–12 June 2015, pp. 447–456 (2015)

    Google Scholar 

  10. Harzallah, H., Jurie, F., Schmid, C.: Combining efficient object localization and image classification. In: IEEE 12th International Conference on Computer Vision, ICCV 2009, Kyoto, Japan, 27 September–4 October 2009, pp. 237–244 (2009)

    Google Scholar 

  11. Lampert, C.H., Blaschko, M.B., Hofmann, T.: Beyond sliding windows: object localization by efficient subwindow search. In: 2008 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2008)

    Google Scholar 

  12. Li, Y.-F., Kwok, J.T., Tsang, I.W., Zhou, Z.-H.: A convex method for locating regions of interest with multi-instance learning. In: Buntine, W., Grobelnik, M., Mladenić, D., Shawe-Taylor, J. (eds.) ECML PKDD 2009. LNCS (LNAI), vol. 5782, pp. 15–30. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04174-7_2

    Chapter  Google Scholar 

  13. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)

    Article  MathSciNet  Google Scholar 

  14. Ma, C., Huang, J., Yang, X., Yang, M.: Hierarchical convolutional features for visual tracking. In: 2015 IEEE International Conference on Computer Vision, ICCV 2015, Santiago, Chile, 7–13 December 2015, pp. 3074–3082 (2015)

    Google Scholar 

  15. Nguyen, M.H., Torresani, L., de la Torre, L., Rother, C.: Weakly supervised discriminative localization and classification: a joint learning process. In: IEEE International Conference on Computer Vision, pp. 1925–1932 (2009)

    Google Scholar 

  16. Pandey, M., Lazebnik, S.: Scene recognition and weakly supervised object localization with deformable part-based models. In: IEEE International Conference on Computer Vision, pp. 1307–1314 (2011)

    Google Scholar 

  17. Russakovsky, O., Lin, Y., Yu, K., Fei-Fei, L.: Object-centric spatial pooling for image classification. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, pp. 1–15. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33709-3_1

    Chapter  Google Scholar 

  18. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. CoRR abs/1409.1556 (2014)

    Google Scholar 

  19. Tang, K.D., Sukthankar, R., Yagnik, J., Li, F.F.: Discriminative segment annotation in weakly labeled video. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2483–2490 (2013)

    Google Scholar 

  20. Vijayanarasimhan, S., Grauman, K.: Efficient region search for object detection. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1401–1408 (2011)

    Google Scholar 

  21. Viola, P.A., Platt, J.C., Zhang, C.: Multiple instance boosting for object detection. In: Advances in Neural Information Processing Systems, pp. 1–8 (2005)

    Google Scholar 

  22. Wang, L., Meng, D., Hu, X., Lu, J., Zhao, J.: Instance annotation via optimal bow for weakly supervised object localization. IEEE Trans. Cybern. 47, 1313–1324 (2017)

    Article  Google Scholar 

  23. Wu, J., Yu, Y., Huang, C., Yu, K.: Deep multiple instance learning for image classification and auto-annotation. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015, Boston, MA, USA, 7–12 June 2015, pp. 3460–3469 (2015)

    Google Scholar 

  24. Xu, C., Xiong, C., Corso, J.J.: Streaming hierarchical video segmentation. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7577, pp. 626–639. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33783-3_45

    Chapter  Google Scholar 

  25. Yakhnenko, O., Verbeek, J., Schmid, C.: Region-based image classification with a latent SVM model. INRIA Technical report, pp. 1–13 (2011)

    Google Scholar 

  26. Zhao, J., Wang, L., Cabral, R., la Torre, F.D.: Feature and region selection for visual learning. IEEE Trans. Image Process. 25, 1084–1094 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgment

This work was supported in part by the National Natural Science Foundation of China (NSFC) (No. 61703139), the Fundamental Research Funds for the Central Universities (No. 2016B12914), and the State Key Laboratory for Novel Software Technology (Nanjing University) (No. KFKT2017B09).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liantao Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, L., Liu, Y., Lu, J. (2018). A Least Squares Approach to Region Selection. In: Cheng, L., Leung, A., Ozawa, S. (eds) Neural Information Processing. ICONIP 2018. Lecture Notes in Computer Science(), vol 11305. Springer, Cham. https://doi.org/10.1007/978-3-030-04221-9_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04221-9_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04220-2

  • Online ISBN: 978-3-030-04221-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics