[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Multi-view Emotion Recognition Using Deep Canonical Correlation Analysis

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11305))

Included in the following conference series:

Abstract

Emotion is a subjective, conscious experience when people face different kinds of stimuli. In this paper, we adopt Deep Canonical Correlation Analysis (DCCA) for high-level coordinated representation to make feature extraction from EEG and eye movement data. Parameters of the two views’ nonlinear transformations are learned jointly to maximize the correlation. We propose a multi-view emotion recognition framework and evaluate its effectiveness on three real world datasets. We found that DCCA efficiently learned representations with high correlation, which contributed to higher emotion classification accuracy. Our experiment results indicate that DCCA model is superior to the state-of-the-art methods with mean accuracies of 94.58% on SEED dataset, 87.45% on SEED IV dataset, and 88.51% and 84.98% for four classification and two dichotomies on DEAP dataset, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://bcmi.sjtu.edu.cn/~seed/.

  2. 2.

    http://www.eecs.qmul.ac.uk/mmv/datasets/deap/.

References

  1. Soleymani, M., Pantic, M., Pun, T.: Multimodal emotion recognition in response to videos. IEEE Trans. Affect. Comput. 3, 211–223 (2012)

    Article  Google Scholar 

  2. Zheng, W.L., Dong, B.N., Lu, B.L.: Multimodal emotion recognition using EEG and eye tracking data. In: EMBS 2014, pp. 5040–5043 (2014)

    Google Scholar 

  3. Lu, Y., Zheng, W.L., Li, B., Lu, B.L.: Combining eye movements and EEG to enhance emotion recognition. In: IJCAI 2015, pp. 1170–1176 (2015)

    Google Scholar 

  4. Baltrusaitis, T., Ahuja C., Morency, L.P.: Multimodal machine learning: a survey and taxonomy. IEEE Trans. Pattern Anal. 1–20 (2018)

    Google Scholar 

  5. Liu, W., Zheng, W.-L., Lu, B.-L.: Emotion recognition using multimodal deep learning. In: Hirose, A., Ozawa, S., Doya, K., Ikeda, K., Lee, M., Liu, D. (eds.) ICONIP 2016. LNCS, vol. 9948, pp. 521–529. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46672-9_58

    Chapter  Google Scholar 

  6. Tang, H., Liu, W., Zheng, W.L., Lu, B.L.: Multimodal emotion recognition using deep neural networks. In: Liu, D., Xie, S., Li, Y., Zhao, D., El-Alfy, E.S. (eds.) ICONIP 2017. LNCS, vol. 10637, pp. 811–819. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70093-9_86

    Chapter  Google Scholar 

  7. Frome, A., et al.: Devise: a deep visual-semantic embedding model. In: NIPS 2013, pp. 2121–2129 (2013)

    Google Scholar 

  8. Bronstein, M., Michel, F., Paragios, N.: Data fusion through cross-modality metric learning using similarity-sensitive hashing. In: CVPR 2010, pp. 3594–3601 (2010)

    Google Scholar 

  9. Zhang, H., Hu, Z., Deng, Y., Sachan, M., Yan, Z., Xing, E.P.: Learning concept taxonomies from multimodal data. In: ACL 2016, pp. 1791–1801 (2016)

    Google Scholar 

  10. Lai, P.L., Fyfe, C.: Kernel and nonlinear canonical correlation analysis. Int. J. Neural Syst. 10, 365–377 (2000)

    Article  Google Scholar 

  11. Sohn, K., Lee, H., Yan, X.: Learning structured output representation using deep conditional generative models. In: NIPS 2015, pp. 3483–3491 (2015)

    Google Scholar 

  12. Yin, Z., Zhao, M., Wang, Y., Yang, J., Zhang, J.: Recognition of emotions using multimodal physiological signals and an ensemble deep learning model. Comput. Methods Progr. Biomed. 140, 93–110 (2017)

    Article  Google Scholar 

  13. Zheng, W.L., Zhu, J.Y., Peng, Y., Lu, B.L.: EEG-based emotion classification using deep belief networks. In: IEEE ICME 2014, pp. 1–6 (2014)

    Google Scholar 

  14. Ngiam, J., Khosla, A., Kim, M., Nam, J., Lee, H., Ng, A.Y.: Multimodal deep learning. In: ICML 2011, pp. 689–696 (2011)

    Google Scholar 

  15. Andrew, G., Arora R., Bilmes, J.A., Livescu, K.: Deep canonical correlation analysis. In: ICML 2013, pp. 1247–1255 (2013)

    Google Scholar 

  16. Zheng, W.L., Liu, W., Lu, Y., Lu, B.L., Cichocki, A.: EmotionMeter: a multimodal framework for recognizing human emotions. IEEE Trans. Cybern. 99, 1–13 (2018)

    Google Scholar 

  17. Chen, J., Hu, B., Wang, Y., Dai, Y., Ya, Y., Zhao, S.: A three-stage decision framework for multi-subject emotion recognition using physiological signals. In: IEEE BIBM 2016, pp. 470–474 (2016)

    Google Scholar 

  18. Tripathi, S., Acharya, S., Sharma, R.D., Mittal, S., Bhattacharya, S.: Using deep and convolutional neural networks for accurate emotion classification on DEAP dataset. In: IAAI 2017 (2017)

    Google Scholar 

  19. Duan, R.N., Zhu, J.Y., Lu, B.L.: Differential entropy feature for EEG-based emotion classification. In: IEEE NER 2013, pp. 81–84 (2013)

    Google Scholar 

  20. Maaten, L., Hinton, G.E., Bengio, Y.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008)

    MATH  Google Scholar 

  21. Hossain, M.Z., Kabir, M.M., Shahjahan, M.: A robust feature selection system with colins CCA network. Neurocomputing 173, 855–863 (2016)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the grants from the National Key Research and Development Program of China (Grant No. 2017YFB1002501), the National Natural Science Foundation of China (Grant No. 61673266), and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bao-Liang Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Qiu, JL., Liu, W., Lu, BL. (2018). Multi-view Emotion Recognition Using Deep Canonical Correlation Analysis. In: Cheng, L., Leung, A., Ozawa, S. (eds) Neural Information Processing. ICONIP 2018. Lecture Notes in Computer Science(), vol 11305. Springer, Cham. https://doi.org/10.1007/978-3-030-04221-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04221-9_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04220-2

  • Online ISBN: 978-3-030-04221-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics