Abstract
Emotion is a subjective, conscious experience when people face different kinds of stimuli. In this paper, we adopt Deep Canonical Correlation Analysis (DCCA) for high-level coordinated representation to make feature extraction from EEG and eye movement data. Parameters of the two views’ nonlinear transformations are learned jointly to maximize the correlation. We propose a multi-view emotion recognition framework and evaluate its effectiveness on three real world datasets. We found that DCCA efficiently learned representations with high correlation, which contributed to higher emotion classification accuracy. Our experiment results indicate that DCCA model is superior to the state-of-the-art methods with mean accuracies of 94.58% on SEED dataset, 87.45% on SEED IV dataset, and 88.51% and 84.98% for four classification and two dichotomies on DEAP dataset, respectively.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Soleymani, M., Pantic, M., Pun, T.: Multimodal emotion recognition in response to videos. IEEE Trans. Affect. Comput. 3, 211–223 (2012)
Zheng, W.L., Dong, B.N., Lu, B.L.: Multimodal emotion recognition using EEG and eye tracking data. In: EMBS 2014, pp. 5040–5043 (2014)
Lu, Y., Zheng, W.L., Li, B., Lu, B.L.: Combining eye movements and EEG to enhance emotion recognition. In: IJCAI 2015, pp. 1170–1176 (2015)
Baltrusaitis, T., Ahuja C., Morency, L.P.: Multimodal machine learning: a survey and taxonomy. IEEE Trans. Pattern Anal. 1–20 (2018)
Liu, W., Zheng, W.-L., Lu, B.-L.: Emotion recognition using multimodal deep learning. In: Hirose, A., Ozawa, S., Doya, K., Ikeda, K., Lee, M., Liu, D. (eds.) ICONIP 2016. LNCS, vol. 9948, pp. 521–529. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46672-9_58
Tang, H., Liu, W., Zheng, W.L., Lu, B.L.: Multimodal emotion recognition using deep neural networks. In: Liu, D., Xie, S., Li, Y., Zhao, D., El-Alfy, E.S. (eds.) ICONIP 2017. LNCS, vol. 10637, pp. 811–819. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70093-9_86
Frome, A., et al.: Devise: a deep visual-semantic embedding model. In: NIPS 2013, pp. 2121–2129 (2013)
Bronstein, M., Michel, F., Paragios, N.: Data fusion through cross-modality metric learning using similarity-sensitive hashing. In: CVPR 2010, pp. 3594–3601 (2010)
Zhang, H., Hu, Z., Deng, Y., Sachan, M., Yan, Z., Xing, E.P.: Learning concept taxonomies from multimodal data. In: ACL 2016, pp. 1791–1801 (2016)
Lai, P.L., Fyfe, C.: Kernel and nonlinear canonical correlation analysis. Int. J. Neural Syst. 10, 365–377 (2000)
Sohn, K., Lee, H., Yan, X.: Learning structured output representation using deep conditional generative models. In: NIPS 2015, pp. 3483–3491 (2015)
Yin, Z., Zhao, M., Wang, Y., Yang, J., Zhang, J.: Recognition of emotions using multimodal physiological signals and an ensemble deep learning model. Comput. Methods Progr. Biomed. 140, 93–110 (2017)
Zheng, W.L., Zhu, J.Y., Peng, Y., Lu, B.L.: EEG-based emotion classification using deep belief networks. In: IEEE ICME 2014, pp. 1–6 (2014)
Ngiam, J., Khosla, A., Kim, M., Nam, J., Lee, H., Ng, A.Y.: Multimodal deep learning. In: ICML 2011, pp. 689–696 (2011)
Andrew, G., Arora R., Bilmes, J.A., Livescu, K.: Deep canonical correlation analysis. In: ICML 2013, pp. 1247–1255 (2013)
Zheng, W.L., Liu, W., Lu, Y., Lu, B.L., Cichocki, A.: EmotionMeter: a multimodal framework for recognizing human emotions. IEEE Trans. Cybern. 99, 1–13 (2018)
Chen, J., Hu, B., Wang, Y., Dai, Y., Ya, Y., Zhao, S.: A three-stage decision framework for multi-subject emotion recognition using physiological signals. In: IEEE BIBM 2016, pp. 470–474 (2016)
Tripathi, S., Acharya, S., Sharma, R.D., Mittal, S., Bhattacharya, S.: Using deep and convolutional neural networks for accurate emotion classification on DEAP dataset. In: IAAI 2017 (2017)
Duan, R.N., Zhu, J.Y., Lu, B.L.: Differential entropy feature for EEG-based emotion classification. In: IEEE NER 2013, pp. 81–84 (2013)
Maaten, L., Hinton, G.E., Bengio, Y.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008)
Hossain, M.Z., Kabir, M.M., Shahjahan, M.: A robust feature selection system with colins CCA network. Neurocomputing 173, 855–863 (2016)
Acknowledgments
This work was supported in part by the grants from the National Key Research and Development Program of China (Grant No. 2017YFB1002501), the National Natural Science Foundation of China (Grant No. 61673266), and the Fundamental Research Funds for the Central Universities.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Qiu, JL., Liu, W., Lu, BL. (2018). Multi-view Emotion Recognition Using Deep Canonical Correlation Analysis. In: Cheng, L., Leung, A., Ozawa, S. (eds) Neural Information Processing. ICONIP 2018. Lecture Notes in Computer Science(), vol 11305. Springer, Cham. https://doi.org/10.1007/978-3-030-04221-9_20
Download citation
DOI: https://doi.org/10.1007/978-3-030-04221-9_20
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-04220-2
Online ISBN: 978-3-030-04221-9
eBook Packages: Computer ScienceComputer Science (R0)