Abstract
Nonnegative matrix factorization (NMF) has many applications as a tool for dimension reduction. In this paper, we reformulate the NMF from an information geometrical viewpoint. We show that a conventional optimization criterion is not geometrically natural, thus we propose to use more natural criterion. By this formulation, we can apply a geometrical algorithm based on the Pythagorean theorem. We also show the algorithm can improve the existing algorithm through numerical experiments.
Supported by JSPS KAKENHI Grant Number 16K16108, 17H01793.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Akaho, S.: The e-PCA and m-PCA: dimension reduction of parameters by information geometry. In: Proceedings of the 2004 IEEE International Joint Conference on Neural Networks, vol. 1, pp. 129–134. IEEE (2004)
Amari, S.: Differential-Geometrical Methods in Statistics. Springer, Heidelberg (1985). https://doi.org/10.1007/978-1-4612-5056-2D
Amari, S.: Information Geometry and Its Applications. AMS, vol. 194. Springer, Tokyo (2016). https://doi.org/10.1007/978-4-431-55978-8
Blei, D.M.: Probabilistic topic models. Commun. ACM 55(4), 77–84 (2012)
Cho, Y.C., Choi, S.: Nonnegative features of spectro-temporal sounds for classification. Pattern Recognit. Lett. 26(9), 1327–1336 (2005)
Cichocki, A., Zdunek, R., Phan, A.H., Amari, S.: Nonnegative Matrix and Tensor Factorizations: Applications to Exploratory Multi-way Data Analysis and Blind Source Separation. Wiley, Chichester (2009)
Collins, M., Dasgupta, S., Schapire, R.E.: A generalization of principal component analysis to the exponential family. In: NIPS, vol. 13, p. 23 (2001)
Dhillon, I.S., Sra, S.: Generalized nonnegative matrix approximations with Bregman divergences. In: NIPS, vol. 18 (2005)
Dong, B., Lin, M.M., Chu, M.T.: Nonnegative rank factorization—a heuristic approach via rank reduction. Numer. Algorithms 65(2), 251–274 (2014)
Févotte, C., Bertin, N., Durrieu, J.L.: Nonnegative matrix factorization with the Itakura-Saito divergence: with application to music analysis. Neural Comput. 21(3), 793–830 (2009)
Harman, D.: Overview of the first text retrieval conference (TREC-1). In: The First Text REtrieval Conference (TREC-1), pp. 1–20, no. 1 (1992)
Harper, F.M., Konstan, J.A.: The MovieLens datasets: history and context. ACM Trans. Interact. Intell. Syst. (TIIS) 5(4), 19 (2016)
Hino, H., Takano, K., Akaho, S., Murata, N.: Non-parametric e-mixture of density functions. In: Hirose, A., Ozawa, S., Doya, K., Ikeda, K., Lee, M., Liu, D. (eds.) ICONIP 2016. LNCS, vol. 9948, pp. 3–10. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46672-9_1
Hofmann, T.: Probabilistic latent semantic indexing. In: Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 50–57. ACM (1999)
Lee, D.D., Seung, H.S.: Algorithms for non-negative matrix factorization. In: Advances in Neural Information Processing Systems, pp. 556–562 (2001)
Nagaoka, H., Amari, S.: Differential geometry of smooth families of probability distributions. Technical report METR 82–7, University of Tokyo (1982)
Takano, K., Hino, H., Akaho, S., Murata, N.: Nonparametric e-mixture estimation. Neural Comput. 28(12), 2687–2725 (2016)
Watanabe, K., Akaho, S., Omachi, S., Okada, M.: Variational Bayesian mixture model on a subspace of exponential family distributions. IEEE Trans. Neural Netw. 20(11), 1783–1796 (2009)
Wohlmayr, M., Pernkopf, F.: Model-based multiple pitch tracking using factorial HMMs: model adaptation and inference. IEEE Trans. Audio Speech Lang. Process. 21(8), 1742–1754 (2013)
Yoshida, K., Kuwatani, T., Hirajima, T., Iwamori, H., Akaho, S.: Progressive evolution of whole-rock composition during metamorphism revealed by multivariate statistical analyses. J. Metamorph. Geol. 36(1), 41–54 (2018)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Akaho, S., Hino, H., Nara, N., Murata, N. (2018). Geometrical Formulation of the Nonnegative Matrix Factorization. In: Cheng, L., Leung, A., Ozawa, S. (eds) Neural Information Processing. ICONIP 2018. Lecture Notes in Computer Science(), vol 11303. Springer, Cham. https://doi.org/10.1007/978-3-030-04182-3_46
Download citation
DOI: https://doi.org/10.1007/978-3-030-04182-3_46
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-04181-6
Online ISBN: 978-3-030-04182-3
eBook Packages: Computer ScienceComputer Science (R0)