Abstract
In this article we summarize recent results on a priori error estimates for space-time finite element discretizations of linear-quadratic parabolic optimal control problems. We consider the following three cases: problems without inequality constraints, problems with pointwise control constraints, and problems with state constraints pointwise in time. For all cases, error estimates with respect to the temporal and to the spatial discretization parameters are derived. The results are illustrated by numerical examples.
Mathematics Subject Classification (2000). 35K20, 49J20, 49M05, 49M15, 49M25, 49M29, 49N10, 65M12, 65M15, 65M60.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
N. Arada, E. Casas, and F. Tröltzsch: Error estimates for a semilinear elliptic optimal control problem. Comput. Optim. Appl. 23 (2002), 201–229.
R. Becker, D. Meidner, and B. Vexler: Efficient numerical solution of parabolic optimization problems by finite element methods. Optim. Methods Softw. 22 (2007), 813–833.
R. Becker and B. Vexler: Optimal control of the convection-diffusion equation using stabilized finite element methods. Numer. Math. 106 (2007), 349–367.
M. Bergounioux, K. Ito, and K. Kunisch: Primal-dual strategy for constrained optimal control problems. SIAM J. Control Optim. 37 (1999), 1176–1194.
E. Casas, M. Mateos, and F. Tröltzsch: Error estimates for the numerical approximation of boundary semilinear elliptic control problems. Comput. Optim. Appl. 31 (2005), 193–220.
K. Chrysafinos: Discontinuous Galerkin approximations for distributed optimal control problems constrained by parabolic PDEs. Int. J. Numer. Anal. Model. 4 (2007), 690–712.
P.G. Ciarlet: The Finite Element Method for Elliptic Problems, volume 40 of Classics Appl. Math. SIAM, Philadelphia, 2002.
K. Deckelnick and M. Hinze: Variational discretization of parabolic control problems in the presence of pointwise state constraints. Preprint SPP1253–08–08, DFG priority program 1253 “Optimization with PDEs”, 2009.
K. Eriksson, D. Estep, P. Hansbo, and C. Johnson: Computational Differential Equations. Cambridge University Press, Cambridge, 1996.
K. Eriksson, C. Johnson, and V. Thomée: Time discretization of parabolic problems by the discontinuous Galerkin method. M2AN Math. Model. Numer. Anal. 19 (1985), 611–643.
R. Falk: Approximation of a class of optimal control problems with order of convergence estimates. J. Math. Anal. Appl. 44 (1973), 28–47.
The finite element toolkit Gascoigne. http://www.gascoigne.uni-hd.de.
T. Geveci: On the approximation of the solution of an optimal control problem governed by an elliptic equation. M2AN Math. Model. Numer. Anal. 13 (1979), 313–328.
M. Hinze: A variational discretization concept in control constrained optimization: The linear-quadratic case. Comput. Optim. Appl. 30 (2005), 45–61.
M. Hinze and M. Vierling: Variational discretization and semi-smooth Newton methods; implementation, convergence and globalization in PDE constrained optimization with control constraints (2010). Submitted. Preprint 2009-15, Hamburger Beiträge zur Angewandten Mathematik (2009).
K. Kunisch and A. Rösch: Primal-dual active set strategy for a general class of constrained optimal control problems. SIAM J. Optim. 13 (2002), 321–334.
I. Lasiecka and K. Malanowski: On discrete-time Ritz-Galerkin approximation of control constrained optimal control problems for parabolic systems. Control Cybern. 7 (1978), 21–36.
M. Luskin and R. Rannacher: On the smoothing property of the Galerkin method for parabolic equations. SIAM J. Numer. Anal. 19 (1982), 93–113.
K. Malanowski: Convergence of approximations vs. regularity of solutions for convex, control-constrained optimal-control problems. Appl. Math. Optim. 8 (1981), 69–95.
R.S. McNight and W.E. Bosarge, jr.: The Ritz-Galerkin procedure for parabolic control problems. SIAM J. Control Optim. 11 (1973), 510–524.
D. Meidner, R. Rannacher, and B. Vexler: A priori error estimates for finite element discretizations of parabolic optimization problems with pointwise state constraints in time. SIAM J. Control Optim. (2011). Accepted.
D. Meidner and B. Vexler: Adaptive space-time finite element methods for parabolic optimization problems. SIAM J. Control Optim. 46 (2007), 116–142.
D. Meidner and B. Vexler: A priori error estimates for space-time finite element approximation of parabolic optimal control problems. Part I: Problems without control constraints. SIAM J. Control Optim. 47 (2008), 1150–1177.
D. Meidner and B. Vexler: A priori error estimates for space-time finite element approximation of parabolic optimal control problems. Part II: Problems with control constraints. SIAM J. Control Optim. 47 (2008), 1301–1329.
C. Meyer and A. Rösch: Superconvergence properties of optimal control problems. SIAM J. Control Optim. 43 (2004), 970–985.
R. Rannacher: 𝐿 ∞-Stability estimates and asymptotic error expansion for parabolic finite element equations. Bonner Math. Schriften 228 (1991), 74–94.
RoDoBo. A C++ library for optimization with stationary and nonstationary PDEs with interface to Gascoigne [12]. http://www.rodobo.uni-hd.de.
A. Rösch: Error estimates for parabolic optimal control problems with control constraints. Z. Anal. Anwend. 23 (2004), 353–376.
A. Rösch and B. Vexler: Optimal control of the Stokes equations: A priori error analysis for finite element discretization with postprocessing. SIAM J. Numer. Anal. 44 (2006), 1903–1920.
V. Thomée: Galerkin Finite Element Methods for Parabolic Problems, volume 25 of Spinger Ser. Comput. Math. Springer, Berlin, 1997.
R. Winther: Error estimates for a Galerkin approximation of a parabolic control problem. Ann. Math. Pura Appl. (4) 117 (1978), 173–206.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer Basel AG
About this chapter
Cite this chapter
Meidner, D., Vexler, B. (2012). A Priori Error Estimates for Space-Time Finite Element Discretization of Parabolic Optimal Control Problems. In: Leugering, G., et al. Constrained Optimization and Optimal Control for Partial Differential Equations. International Series of Numerical Mathematics, vol 160. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-0133-1_23
Download citation
DOI: https://doi.org/10.1007/978-3-0348-0133-1_23
Published:
Publisher Name: Birkhäuser, Basel
Print ISBN: 978-3-0348-0132-4
Online ISBN: 978-3-0348-0133-1
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)