[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Priori Error Estimates for Space-Time Finite Element Discretization of Parabolic Optimal Control Problems

  • Chapter
  • First Online:
Constrained Optimization and Optimal Control for Partial Differential Equations

Part of the book series: International Series of Numerical Mathematics ((ISNM,volume 160))

  • 2867 Accesses

Abstract

In this article we summarize recent results on a priori error estimates for space-time finite element discretizations of linear-quadratic parabolic optimal control problems. We consider the following three cases: problems without inequality constraints, problems with pointwise control constraints, and problems with state constraints pointwise in time. For all cases, error estimates with respect to the temporal and to the spatial discretization parameters are derived. The results are illustrated by numerical examples.

Mathematics Subject Classification (2000). 35K20, 49J20, 49M05, 49M15, 49M25, 49M29, 49N10, 65M12, 65M15, 65M60.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 103.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 129.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 129.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. N. Arada, E. Casas, and F. Tröltzsch: Error estimates for a semilinear elliptic optimal control problem. Comput. Optim. Appl. 23 (2002), 201–229.

    Article  MathSciNet  Google Scholar 

  2. R. Becker, D. Meidner, and B. Vexler: Efficient numerical solution of parabolic optimization problems by finite element methods. Optim. Methods Softw. 22 (2007), 813–833.

    Article  MathSciNet  Google Scholar 

  3. R. Becker and B. Vexler: Optimal control of the convection-diffusion equation using stabilized finite element methods. Numer. Math. 106 (2007), 349–367.

    Article  MathSciNet  Google Scholar 

  4. M. Bergounioux, K. Ito, and K. Kunisch: Primal-dual strategy for constrained optimal control problems. SIAM J. Control Optim. 37 (1999), 1176–1194.

    Article  MathSciNet  Google Scholar 

  5. E. Casas, M. Mateos, and F. Tröltzsch: Error estimates for the numerical approximation of boundary semilinear elliptic control problems. Comput. Optim. Appl. 31 (2005), 193–220.

    Article  MathSciNet  Google Scholar 

  6. K. Chrysafinos: Discontinuous Galerkin approximations for distributed optimal control problems constrained by parabolic PDEs. Int. J. Numer. Anal. Model. 4 (2007), 690–712.

    MathSciNet  MATH  Google Scholar 

  7. P.G. Ciarlet: The Finite Element Method for Elliptic Problems, volume 40 of Classics Appl. Math. SIAM, Philadelphia, 2002.

    Book  Google Scholar 

  8. K. Deckelnick and M. Hinze: Variational discretization of parabolic control problems in the presence of pointwise state constraints. Preprint SPP1253–08–08, DFG priority program 1253 “Optimization with PDEs”, 2009.

    Google Scholar 

  9. K. Eriksson, D. Estep, P. Hansbo, and C. Johnson: Computational Differential Equations. Cambridge University Press, Cambridge, 1996.

    MATH  Google Scholar 

  10. K. Eriksson, C. Johnson, and V. Thomée: Time discretization of parabolic problems by the discontinuous Galerkin method. M2AN Math. Model. Numer. Anal. 19 (1985), 611–643.

    Article  MathSciNet  Google Scholar 

  11. R. Falk: Approximation of a class of optimal control problems with order of convergence estimates. J. Math. Anal. Appl. 44 (1973), 28–47.

    Article  MathSciNet  Google Scholar 

  12. The finite element toolkit Gascoigne. http://www.gascoigne.uni-hd.de.

  13. T. Geveci: On the approximation of the solution of an optimal control problem governed by an elliptic equation. M2AN Math. Model. Numer. Anal. 13 (1979), 313–328.

    MathSciNet  MATH  Google Scholar 

  14. M. Hinze: A variational discretization concept in control constrained optimization: The linear-quadratic case. Comput. Optim. Appl. 30 (2005), 45–61.

    Article  MathSciNet  Google Scholar 

  15. M. Hinze and M. Vierling: Variational discretization and semi-smooth Newton methods; implementation, convergence and globalization in PDE constrained optimization with control constraints (2010). Submitted. Preprint 2009-15, Hamburger Beiträge zur Angewandten Mathematik (2009).

    Google Scholar 

  16. K. Kunisch and A. Rösch: Primal-dual active set strategy for a general class of constrained optimal control problems. SIAM J. Optim. 13 (2002), 321–334.

    Article  MathSciNet  Google Scholar 

  17. I. Lasiecka and K. Malanowski: On discrete-time Ritz-Galerkin approximation of control constrained optimal control problems for parabolic systems. Control Cybern. 7 (1978), 21–36.

    MathSciNet  MATH  Google Scholar 

  18. M. Luskin and R. Rannacher: On the smoothing property of the Galerkin method for parabolic equations. SIAM J. Numer. Anal. 19 (1982), 93–113.

    Article  MathSciNet  Google Scholar 

  19. K. Malanowski: Convergence of approximations vs. regularity of solutions for convex, control-constrained optimal-control problems. Appl. Math. Optim. 8 (1981), 69–95.

    Article  MathSciNet  Google Scholar 

  20. R.S. McNight and W.E. Bosarge, jr.: The Ritz-Galerkin procedure for parabolic control problems. SIAM J. Control Optim. 11 (1973), 510–524.

    Article  MathSciNet  Google Scholar 

  21. D. Meidner, R. Rannacher, and B. Vexler: A priori error estimates for finite element discretizations of parabolic optimization problems with pointwise state constraints in time. SIAM J. Control Optim. (2011). Accepted.

    Google Scholar 

  22. D. Meidner and B. Vexler: Adaptive space-time finite element methods for parabolic optimization problems. SIAM J. Control Optim. 46 (2007), 116–142.

    Article  MathSciNet  Google Scholar 

  23. D. Meidner and B. Vexler: A priori error estimates for space-time finite element approximation of parabolic optimal control problems. Part I: Problems without control constraints. SIAM J. Control Optim. 47 (2008), 1150–1177.

    Article  MathSciNet  Google Scholar 

  24. D. Meidner and B. Vexler: A priori error estimates for space-time finite element approximation of parabolic optimal control problems. Part II: Problems with control constraints. SIAM J. Control Optim. 47 (2008), 1301–1329.

    Article  MathSciNet  Google Scholar 

  25. C. Meyer and A. Rösch: Superconvergence properties of optimal control problems. SIAM J. Control Optim. 43 (2004), 970–985.

    Article  MathSciNet  Google Scholar 

  26. R. Rannacher: 𝐿 -Stability estimates and asymptotic error expansion for parabolic finite element equations. Bonner Math. Schriften 228 (1991), 74–94.

    MathSciNet  MATH  Google Scholar 

  27. RoDoBo. A C++ library for optimization with stationary and nonstationary PDEs with interface to Gascoigne [12]. http://www.rodobo.uni-hd.de.

  28. A. Rösch: Error estimates for parabolic optimal control problems with control constraints. Z. Anal. Anwend. 23 (2004), 353–376.

    Article  MathSciNet  Google Scholar 

  29. A. Rösch and B. Vexler: Optimal control of the Stokes equations: A priori error analysis for finite element discretization with postprocessing. SIAM J. Numer. Anal. 44 (2006), 1903–1920.

    Article  MathSciNet  Google Scholar 

  30. V. Thomée: Galerkin Finite Element Methods for Parabolic Problems, volume 25 of Spinger Ser. Comput. Math. Springer, Berlin, 1997.

    Book  Google Scholar 

  31. R. Winther: Error estimates for a Galerkin approximation of a parabolic control problem. Ann. Math. Pura Appl. (4) 117 (1978), 173–206.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominik Meidner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Basel AG

About this chapter

Cite this chapter

Meidner, D., Vexler, B. (2012). A Priori Error Estimates for Space-Time Finite Element Discretization of Parabolic Optimal Control Problems. In: Leugering, G., et al. Constrained Optimization and Optimal Control for Partial Differential Equations. International Series of Numerical Mathematics, vol 160. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-0133-1_23

Download citation

Publish with us

Policies and ethics