Abstract
The aim of this paper is to show the application potential of the cylindrical Fourier transform, which was recently devised as a new integral transform within the context of Clifford analysis. Next to the approximation approach where, using density arguments, the spectrum of various types of functions and distributions may be calculated starting from the cylindrical Fourier images of the L 2-basis functions in ℝm, direct computation methods are introduced for specific distributions supported on the unit sphere, and an illustrative example is worked out.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Brackx, F., Delanghe, R., Sommen, F.: Clifford Analysis. Pitman Publishers, London (1982)
Brackx, F., De Schepper, N., Sommen, F.: The Clifford–Fourier transform. J. Fourier Anal. Appl. (2005). doi:10.1007/s00041-005-4079-9
Brackx, F., De Schepper, N., Sommen, F.: The two-dimensional Clifford–Fourier transform. J. Math. Imaging Vis. (2006). doi:10.1007/s10851-006-3605-y
Brackx, F., De Schepper, N., Sommen, F.: The cylindrical Fourier spectrum of an L 2-basis consisting of generalized Clifford–Hermite functions. In: Simos, T.E., Psihoyios, G., Tsitouras, Ch. (eds.) Numerical Analysis and Applied Mathematics, AIP Conference Proceedings, Kos, Greece, pp. 686–690 (2008)
Brackx, F., De Schepper, N., Sommen, F.: The Fourier transform in Clifford analysis. Adv. Imaging Electron Phys. (2009). doi:10.1016/S1076-5670(08)01402-x
Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.G.: Higher Transcendental Functions. vol. 1. McGraw-Hill, New York (1953)
Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products. Academic Press, San Diego (1980)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag London
About this chapter
Cite this chapter
Brackx, F., De Schepper, N., Sommen, F. (2010). The Cylindrical Fourier Transform. In: Bayro-Corrochano, E., Scheuermann, G. (eds) Geometric Algebra Computing. Springer, London. https://doi.org/10.1007/978-1-84996-108-0_6
Download citation
DOI: https://doi.org/10.1007/978-1-84996-108-0_6
Published:
Publisher Name: Springer, London
Print ISBN: 978-1-84996-107-3
Online ISBN: 978-1-84996-108-0
eBook Packages: Computer ScienceComputer Science (R0)