[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

The Cylindrical Fourier Transform

  • Chapter
  • First Online:
Geometric Algebra Computing

Abstract

The aim of this paper is to show the application potential of the cylindrical Fourier transform, which was recently devised as a new integral transform within the context of Clifford analysis. Next to the approximation approach where, using density arguments, the spectrum of various types of functions and distributions may be calculated starting from the cylindrical Fourier images of the L 2-basis functions in ℝm, direct computation methods are introduced for specific distributions supported on the unit sphere, and an illustrative example is worked out.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 133.00
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 166.50
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 152.00
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Brackx, F., Delanghe, R., Sommen, F.: Clifford Analysis. Pitman Publishers, London (1982)

    MATH  Google Scholar 

  2. Brackx, F., De Schepper, N., Sommen, F.: The Clifford–Fourier transform. J. Fourier Anal. Appl. (2005). doi:10.1007/s00041-005-4079-9

    Google Scholar 

  3. Brackx, F., De Schepper, N., Sommen, F.: The two-dimensional Clifford–Fourier transform. J. Math. Imaging Vis. (2006). doi:10.1007/s10851-006-3605-y

    Google Scholar 

  4. Brackx, F., De Schepper, N., Sommen, F.: The cylindrical Fourier spectrum of an L 2-basis consisting of generalized Clifford–Hermite functions. In: Simos, T.E., Psihoyios, G., Tsitouras, Ch. (eds.) Numerical Analysis and Applied Mathematics, AIP Conference Proceedings, Kos, Greece, pp. 686–690 (2008)

    Google Scholar 

  5. Brackx, F., De Schepper, N., Sommen, F.: The Fourier transform in Clifford analysis. Adv. Imaging Electron Phys. (2009). doi:10.1016/S1076-5670(08)01402-x

    Google Scholar 

  6. Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.G.: Higher Transcendental Functions. vol. 1. McGraw-Hill, New York (1953)

    Google Scholar 

  7. Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products. Academic Press, San Diego (1980)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nele De Schepper .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag London

About this chapter

Cite this chapter

Brackx, F., De Schepper, N., Sommen, F. (2010). The Cylindrical Fourier Transform. In: Bayro-Corrochano, E., Scheuermann, G. (eds) Geometric Algebra Computing. Springer, London. https://doi.org/10.1007/978-1-84996-108-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-84996-108-0_6

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84996-107-3

  • Online ISBN: 978-1-84996-108-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics