Abstract
RAGE (receptor for advanced glycation end products) is a multi-ligand receptor that belongs to the immunoglobulin superfamily of transmembrane proteins. RAGE binds AGEs (advanced glycation end products), HMGB1 (high-mobility group box-1; also designated as amphoterin), members of the S100 protein family, glycosaminoglycans and amyloid β peptides. Recent studies using tools of structural biology have started to unravel common molecular patterns in the diverse set of ligands recognized by RAGE. The distal Ig domain (V1 domain) of RAGE has a positively charged patch, the geometry of which fits to anionic surfaces displayed at least in a proportion of RAGE ligands. Association of RAGE to itself, to HSPGs (heparan sulfate proteoglycans), and to Toll-like receptors in the cell membrane plays a key role in cell signaling initiated by RAGE ligation. Ligation of RAGE activates cell signaling pathways that regulate migration of several cell types. Furthermore, RAGE ligation has profound effects on the transcriptional profile of cells. RAGE signaling has been mainly studied as a pathogenetic factor of several diseases, where acute or chronic inflammation plays a role. Recent studies have suggested a physiological role for RAGE in normal lung function and in neuronal signaling.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Schmidt AM, Vianna M, Gerlach M et al (1992) Isolation and characterization of 2 binding-proteins for advanced glycosylation end-products from bovine lung which are present on the endothelial-cell surface. J Biol Chem 267:14987–14997
Sugaya K, Fukagawa T, Matsumoto K et al (1994) Three genes in the human MHC class-III region near the junction with the class-II—gene for receptor of advanced glycosylation end-products, PBX2 homeobox gene and a notch homolog, human counterpart of mouse mammary-tumor gene int-3. Genomics 23:408–419
Bowen MA, Patel DD, Li X et al (1995) Cloning, mapping, and characterization of activated leukocyte-cell adhesion molecule (ALCAM), a CD6 ligand. J Exp Med 181:2213–2220
Koch M, Chitayat S, Dattilo BM et al (2010) Structural basis for ligand recognition and activation of RAGE. Structure 18:1342–1352
Tsuji A, Wakisaka N, Kondo S et al (2008) Induction of receptor for advanced glycation end products by EBV latent membrane protein 1 and its correlation with angiogenesis and cervical lymph node metastasis in nasopharyngeal carcinoma. Clin Cancer Res 14:5368–5375
Pichiule P, Chavez JC, Schmidt AM et al (2007) Hypoxia-inducible factor-1 mediates neuronal expression of the receptor for advanced glycation end products following hypoxia/ischemia. J Biol Chem 282:36330–36340
Li JF, Schmidt AM (1997) Characterization and functional analysis of the promoter of RAGE, the receptor for advanced glycation end products. J Biol Chem 272:16498–16506
Reynolds PR, Kasteler SD, Cosio MG et al (2008) RAGE: developmental expression and positive feedback regulation by Egr-1 during cigarette smoke exposure in pulmonary epithelial cells. Am J Physiol Lung Cell Mol Physiol 294:L1094–L1101
Tohgi H, Utsugisawa K, Nagane Y et al (1999) Decrease with age in methylcytosines in the promoter region of receptor for advanced glycated end products (RAGE) gene in autopsy human cortex. Brain Res Mol Brain Res 65:124–128
Caballero JJ, Girón MD, Vargas AM et al (2004) AU-rich elements in the mRNA 3’ -untranslated region of the rat receptor for advanced glycation end products and their relevance to mRNA stability. Biochem Biophys Res Commun 319:247–255
Shi SL, Yu LP, Chiu C et al (2008) Podocyte-selective deletion of dicer induces proteinuria and glomerulosclerosis. J Am Soc Nephrol 19:2159–2169
Hudson BI, Carter AM, Harja E et al (2008) Identification, classification, and expression of RAGE gene splice variants. FASEB J 22:1572–1580
Ohe K, Watanabe T, Harada S et al (2010) Regulation of alternative splicing of the receptor for advanced glycation endproducts (RAGE) through G-rich cis-elements and heterogenous nuclear ribonucleoprotein H. J Biochem 147:651–659
Neeper M, Schmidt AM, Brett J et al (1992) Cloning and expression of a cell-surface receptor for advanced glycosylation end-products of proteins. J Biol Chem 267:14998–15004
Galichet A, Weibel M, Heizmann CW (2008) Calcium-regulated intramembrane proteolysis of the RAGE receptor. Biochem Biophys Res Commun 370:1–5
Raucci A, Cugusi S, Antonelli A et al (2008) A soluble form of the receptor for advanced glycation endproducts (RAGE) is produced by proteolytic cleavage of the membrane-bound form by the sheddase a disintegrin and metalloprotease 10 (ADAM10). FASEB J 22:3716–3727
Zhang L, Bukulin M, Kojro E et al (2008) Receptor for advanced glycation end products is subjected to protein ectodomain shedding by metalloproteinases. J Biol Chem 283:35507–35516
Srikrishna G, Huttunen HJ, Johansson L et al (2002) N-glycans on the receptor for advanced glycation end products influence amphoterin binding and neurite outgrowth. J Neurochem 80:998–1008
Srikrishna G, Nayak J, Weigle B et al (2010) Carboxylated N-Glycans on RAGE promote S100A12 binding and signaling. J Cell Biochem 110:645–659
Turovskaya O, Foell D, Sinha P et al (2008) RAGE, carboxylated glycans and S100A8/A9 play essential roles in colitis-associated carcinogenesis. Carcinogenesis 29:2035–2043
Dattilo BM, Fritz G, Leclerc E et al (2007) The extracellular region of the receptor for advanced glycation end products is composed of two independent structural units. Biochemistry 46:6957–6970
Matsumoto S, Yoshida T, Murata H et al (2008) Solution structure of the variable-type domain of the receptor for advanced glycation end products: new insight into AGE-RAGE interaction. Biochemistry 47:12299–12311
Park H, Adsit FG, Boyington JC (2011) The 1.5 angstrom crystal structure of human receptor for advanced glycation endproducts (RAGE) ectodomains reveals unique features determining ligand binding (vol 285, pg 40762, 2010). J Biol Chem 286: 19178–19178
Sárkány Z, Ikonen TP, Ferreira-da-Silva F et al (2011) Solution structure of the soluble receptor for advanced glycation end products (sRAGE). J Biol Chem 286:37525–37534
Xie JJ, Reverdatto S, Frolov A et al (2008) Structural basis for pattern recognition by the receptor for advanced glycation end products (RAGE). J Biol Chem 283:27255–27269
Xue J, Rai V, Singer D et al (2011) Advanced glycation end product recognition by the receptor for AGEs. Structure 19:722–732
Fritz G (2011) RAGE: a single receptor fits multiple ligands. Trends Biochem Sci 36:625–632
Leclerc E, Sturchler E, Vetter SW et al (2009) Crosstalk between calcium, amyloid beta and the receptor for advanced glycation endproducts in Alzheimer’s disease. Rev Neurosci 20:95–110
Xie J, Burz DS, He W et al (2007) Hexameric calgranulin C (S100A12) binds to the receptor for advanced glycated end products (RAGE) using symmetric hydrophobic target-binding patches. J Biol Chem 282:4218–4231
Ostendorp T, Leclerc E, Galichet A et al (2007) Structural and functional insights into RAGE activation by multimeric S100B. EMBO J 26:3868–3878
Ramasamy R, Yan SF, Schmidt AM (2009) RAGE: therapeutic target and biomarker of the inflammatory response-the evidence mounts. J Leukoc Biol 86:505–512
Hori O, Brett J, Slattery T et al (1995) The receptor for advanced glycation end-products (RAGE) is a cellular-binding site for amphoterin—mediation of neurite outgrowth and coexpression of rage and amphoterin in the developing nervous-system. J Biol Chem 270:25752–25761
Rauvala H, Pihlaskari R (1987) Isolation and some characteristics of an adhesive factor of brain that enhances neurite outgrowth in central neurons. J Biol Chem 262:16625–16635
Bianchi ME, Beltrame M, Paonessa G (1989) Specific recognition of cruciform DNA by nuclear protein HMG1. Science 243:1056–1059
Merenmies J, Pihlaskari R, Laitinen J et al (1991) 30-kDa heparin-binding protein of brain (amphoterin) involved in neurite outgrowth: amino acid sequence and localization in the filopodia of the advancing plasma membrane. J Biol Chem 266:16722–16729
Rauvala H, Rouhiainen A (2010) Physiological and pathophysiological outcomes of the interactions of HMGB1 with cell surface receptors. Biochim Biophys Acta 1799:164–170
Rauvala H, Merenmies J, Pihlaskari R et al (1988) The adhesive and neurite-promoting molecule p30: analysis of the amino-terminal sequence and production of antipeptide antibodies that detect p30 at the surface of neuroblastoma cells and of brain neurons. J Cell Biol 107:2293–2305
Sunden-Cullberg J, Norrby-Teglund A, Rouhiainen A et al (2005) Persistent elevation of high mobility group box-1 protein (HMGB1) in patients with severe sepsis and septic shock. Crit Care Med 33:564–573
Wang HC, Bloom O, Zhang MH et al (1999) HMG-1 as a late mediator of endotoxin lethality in mice. Science 285:248–251
Rouhiainen A, Kuja-Panula J, Wilkman E et al (2004) Regulation of monocyte migration by amphoterin (HMGB1). Blood 104:1174–1182
Fages C, Nolo R, Huttunen HJ et al (2000) Regulation of cell migration by amphoterin. J Cell Sci 113:611–620
Parkkinen J, Raulo E, Merenmies J et al (1993) Amphoterin, the 30-kDa protein in a family of HMG1-type polypeptides: enhanced expression in transformed cells, leading edge localization and interactions with plasminogen activation. J Biol Chem 268:19726–19738
Lotze MT, Tracey KJ (2005) High-mobility group box 1 protein (HMGB): nuclear weapon in the immune arsenal. Nat Rev Immunol 5:331–342
Muller S, Ronfani L, Bianchi ME (2004) Regulated expression and subcellular localization of HMGB1, a chromatin protein with a cytokine function. J Intern Med 255:332–343
Ulloa L, Messmer D (2006) High-mobility group box 1 (HMGB1) protein: friend and foe. Cytokine Growth Factor Rev 17:189–201
Bonaldi T, Talamo F, Scaffidi P et al (2003) Monocytic cells hyperacetylate chromatin protein HMGB1 to redirect it towards secretion. EMBO J 22:5551–5560
Youn JH, Shin JS (2006) Nucleocytoplasmic shuttling of HMGB1 is regulated by phosphorylation that redirects it toward secretion. J Immunol 177:7889–7897
Ito I, Fukazawa J, Yoshida M (2007) Post-translational methylation of high mobility group box 1 (HMGB1) causes its cytoplasmic localization in neutrophils. J Biol Chem 282:16336–16344
Ditsworth D, Zong WX, Thompson CB (2007) Activation of poly(ADP)-ribose polymerase (PARP-1) induces release of the pro-inflammatory mediator HMGB1 from the nucleus. J Biol Chem 282:17845–17854
Dupont N, Jiang S, Pilli M et al (2011) Autophagy-based unconventional secretory pathway for extracellular delivery of IL-1β. EMBO J 30:4701–4711
Huttunen HJ, Fages C, Kuja-Panula J et al (2002) Receptor for advanced glycation end products-binding COOH-terminal motif of amphoterin inhibits invasive migration and metastasis. Cancer Res 62:4805–4811
Huttunen HJ, Fages C, Rauvala H (1999) Receptor for advanced glycation end products (RAGE)-mediated neurite outgrowth and activation of NF-kappa B require the cytoplasmic domain of the receptor but different downstream signaling pathways. J Biol Chem 274:19919–19924
Rong LL, Trojaborg W, Qu W et al (2004) Antagonism of RAGE suppresses peripheral nerve regeneration. FASEB J 18:1812–1817
Rong LL, Yan SF, Wendt T et al (2004) RAGE modulates peripheral nerve regeneration via recruitment of both inflammatory and axonal outgrowth pathways. FASEB J 18:1818–1825
Taguchi A, Blood DC, del Toro G et al (2000) Blockade of RAGE-amphoterin signalling suppresses tumour growth and metastases. Nature 405:354–360
Chavakis E, Hain A, Vinci M et al (2007) High-mobility group box 1 activates integrin-dependent homing of endothelial progenitor cells. Circ Res 100:204–212
Schlueter C, Weber H, Meyer B et al (2005) Angiogenetic signaling through hypoxia—HMGB1: an angiogenetic switch molecule. Am J Pathol 166:1259–1263
van Beijnum JR, Dings RP, van der Linden E et al (2006) Gene expression of tumor angiogenesis dissected: specific targeting of colon cancer angiogenic vasculature. Blood 108:2339–2348
Orlova VV, Choi EY, Xie CP et al (2007) A novel pathway of HMGB1-mediated inflammatory cell recruitment that requires Mac-1-integrin. EMBO J 26:1129–1139
Dumitriu IE, Baruah P, Manfredi AA et al (2005) HMGB1: guiding immunity from within. Trends Immunol 26:381–387
Dumitriu IE, Bianchi ME, Bacci M et al (2007) The secretion of HMGB1 is required for the migration of maturing dendritic cells. J Leukoc Biol 81:84–91
Yang D, Chen Q, Yang H et al (2007) High mobility group box-1 protein induces the migration and activation of human dendritic cells and acts as an alarmin. J Leukoc Biol 81:59–66
Porto A, Palumbo R, Pieroni M et al (2006) Smooth muscle cells in human atherosclerotic plaques secrete and proliferate in response to high mobility group box 1 protein. FASEB J 20:2565–2566
Germani A, Limana F, Capogrossi MC (2007) Pivotal advance: high-mobility group box 1 protein—a cytokine with a role in cardiac repair. J Leukoc Biol 81:41–45
Limana F, Germani A, Zacheo A et al (2005) Exogenous high-mobility group box 1 protein induces myocardial regeneration after infarction via enhanced cardiac c-kit(+) cell proliferation and differentiation. Circ Res 97:E73–E83
Palumbo R, Sampaolesi M, De Marchis F et al (2004) Extracellular HMGB1, a signal of tissue damage, induces mesoangioblast migration and proliferation. J Cell Biol 164:441–449
Xu D, Young J, Song D et al (2011) Heparan sulfate is essential for high mobility group protein-1 (HMGB1) signaling by the receptor for advanced glycation end products (RAGE). J Biol Chem 268:41736–41744
Leclerc E, Fritz G, Vetter SW et al (2009) Binding of S100 proteins to RAGE: an update. Biochim Biophys Acta 1793:993–1007
Hofmann MA, Drury S, Fu CF et al (1999) RAGE mediates a novel proinflammatory axis: a central cell surface receptor for S100/calgranulin polypeptides. Cell 97:889–901
Leclerc E, Heizmann C (2011) The importance of Ca2+/Zn2+ signaling S100 proteins and RAGE in translational medicine. Front Biosci S3:1232–1262
Yan SD, Chen X, Fu J et al (1996) RAGE and amyloid-beta peptide neurotoxicity in Alzheimer’s disease. Nature 382:685–691
Deane R, Yan SD, Submamaryan RK et al (2003) RAGE mediates amyloid-beta peptide transport across the blood–brain barrier and accumulation in brain. Nat Med 9:907–913
Sturchler E, Galichet A, Weibel M et al (2008) Site-specific blockade of RAGE-V-d prevents amyloid-beta oligomer neurotoxicity. J Neurosci 28:5149–5158
Bopp C, Bierhaus A, Hofer S et al (2008) Bench-to-bedside review: the inflammation-perpetuating pattern-recognition receptor RAGE as a therapeutic target in sepsis. Crit Care 12:201. doi:210.1186/cc6164
Banerjee S, Friggeri A, Liu G et al (2010) The C-terminal acidic tail is responsible for the inhibitory effects of HMGB1 on efferocytosis. J Leukoc Biol 88:973–979
Huttunen HJ, Rauvala H (2004) Amphoterin as an extracellular regulator of cell motility: from discovery to disease. J Intern Med 255:351–366
Gospodarska E, Kupniewska-Kozak A, Goch G et al (2011) Binding studies of truncated variants of the A beta peptide to the V-domain of the RAGE receptor reveal A beta residues responsible for binding. Biochim Biophys Acta 1814:592–609
Hudson BI, Kalea AZ, Arriero MD et al (2008) Interaction of the RAGE cytoplasmic domain with diaphanous-1 is required for ligand-stimulated cellular migration through activation of Rac1 and Cdc42. J Biol Chem 283:34457–34468
Ishihara K, Tsutsumi K, Kawane S et al (2003) The receptor for advanced glycation end-products (RAGE) directly binds to ERK by a D-domain-like docking site. FEBS Lett 550:107–113
Chavakis T, Bierhaus A, Al-Fakhri N et al (2003) The pattern recognition receptor (RAGE) is a counterreceptor for leukocyte integrins: a novel pathway for inflammatory cell recruitment. J Exp Med 198:1507–1515
Xiong F, Leonov S, Howard AC et al (2011) Receptor for advanced glycation end products (RAGE) prevents endothelial cell membrane resealing and regulates F-actin remodeling in a beta-catenin-dependent manner. J Biol Chem 286:35061–35070
Buckley ST, Medina C, Kasper M et al (2011) Interplay between RAGE, CD44, and focal adhesion molecules in epithelial-mesenchymal transition of alveolar epithelial cells. Am J Physiol Lung Cell Mol Physiol 300:L548–L559
Lander HM, Tauras JM, Ogiste JS et al (1997) Activation of the receptor for advanced glycation end products triggers a p21(ras)-dependent mitogen-activated protein kinase pathway regulated by oxidant stress. J Biol Chem 272:17810–17814
Sakaguchi M, Murata H, Yamamoto K et al (2011) TIRAP, an adaptor protein for TLR2/4, transduces a signal from RAGE phosphorylated upon ligand binding. PLoS One 6. doi:10.1371/journal.pone.0023132
Perrone L, Devi TS, Hosoya KI et al (2009) Thioredoxin interacting protein (TXNIP) induces inflammation through chromatin modification in retinal capillary endothelial cells under diabetic conditions. J Cell Physiol 221:262–272
Bierhaus A, Humpert PM, Morcos M et al (2005) Understanding RAGE, the receptor for advanced glycation end products. J Mol Med 83:876–886
Schmidt AM, Yan SD, Yan SF et al (2000) The biology of the receptor for advanced glycation end products and its ligands. Biochim Biophys Acta 1498:99–111
Raulo E, Chernousov MA, Carey DJ et al (1994) Isolation of a neuronal cell surface receptor of heparin binding growth-associated molecule (HB-GAM): identification as N-syndecan (syndecan-3). J Biol Chem 269:12999–13004
Park JS, Svetkauskaite D, He QB et al (2004) Involvement of toll-like receptors 2 and 4 in cellular activation by high mobility group box 1 protein. J Biol Chem 279:7370–7377
Rouhiainen A, Tumova S, Valmu L et al (2007) Pivotal advance: analysis of proinflammatory activity of highly purified eukaryotic recombinant HMGB1 (amphoterin). J Leukoc Biol 81:49–58
Tian J, Avalos AM, Mao SY et al (2007) Toll-like receptor 9-dependent activation by DNA-containing immune complexes is mediated by HMGB1 and RAGE. Nat Immunol 8:487–496
Yang H, Lundbäck P, Ottosson L et al (2011) Redox modification of cysteine residues regulates the cytokine activity of HMGB1. Mol Med. doi:10.2119/molmed.2011.00389, Epub ahead of print
Yang HA, Hreggvidsdottir HS, Palmblad K et al (2010) A critical cysteine is required for HMGB1 binding to toll-like receptor 4 and activation of macrophage cytokine release. Proc Natl Acad Sci U S A 107:11942–11947
Robinson MJ, Tessier P, Poulsom R et al (2002) The S100 family heterodimer, MRP-8/14, binds with high affinity to heparin and heparan sulfate glycosaminoglycans on endothelial cells. J Biol Chem 277:3658–3665
Sorci G, Giovannini G, Riuzzi F et al (2011) The danger signal S100B integrates pathogen- and danger-sensing pathways to restrain inflammation. PLoS Pathog 7:E1001315. doi:10.1371/journal.ppat.1001315
Stewart CR, Stuart LM, Wilkinson K et al (2010) CD36 ligands promote sterile inflammation through assembly of a toll-like receptor 4 and 6 heterodimer. Nat Immunol 11:155–161
Mazarati A, Maroso M, Iori V et al (2011) High-mobility group box-1 impairs memory in mice through both toll-like receptor 4 and receptor for advanced glycation end products. Exp Neurol 232:143–148
Yang H, Ochani M, Li JH et al (2004) Reversing established sepsis with antagonists of endogenous high-mobility group box 1. Proc Natl Acad Sci U S A 101:296–301
Liliensiek B, Weigand MA, Bierhaus A et al (2004) Receptor for advanced glycation end products (RAGE) regulates sepsis but not the adaptive immune response. J Clin Invest 113:1641–1650
Kim JB, Choi JS, Yu YM et al (2006) HMGB1, a novel cytokine-like mediator linking acute neuronal death and delayed neuroinflammation in the postischemic brain. J Neurosci 26:6413–6421
Liu K, Mori S, Takahashi HK et al (2007) Anti-high mobility group box 1 monoclonal antibody ameliorates brain infarction induced by transient ischemia in rats. FASEB J 21:3904–3916
Muhammad S, Barakat W, Stoyanov S et al (2008) The HMGB1 receptor RAGE mediates ischemic brain damage. J Neurosci 28:12023–12031
Naka Y, Bucciarelli LG, Wendt T et al (2004) RAGE axis—animal models and novel insights into the vascular complications of diabetes. Arterioscler Thromb Vasc Biol 24:1342–1349
Wautier JL, Schmidt AM (2004) Protein glycation—a firm link to endothelial cell dysfunction. Circ Res 95:233–238
Origlia N, Capsoni S, Cattaneo A et al (2009) A beta-dependent inhibition of LTP in different intracortical circuits of the visual cortex: the role of RAGE. J Alzheimers Dis 17:59–68
Yan SS, Wu ZY, Zhang HP et al (2003) Suppression of experimental autoimmune encephalomyelitis by selective blockade of encephalitogenic T-cell infiltration of the central nervous system. Nat Med 9:287–293
Rauvala H, Huttunen HJ, Fages C et al (2000) Heparin-binding proteins HB-GAM (pleiotrophin) and amphoterin in the regulation of cell motility. Matrix Biol 19:377–387
Vakkila J, Lotze MT (2004) Opinion—inflammation and necrosis promote tumour growth. Nat Rev Immunol 4:641–648
Yonekura H, Yamamoto Y, Sakurai S et al (2005) Roles of the receptor for advanced glycation endproducts in diabetes-induced vascular injury. J Pharmacol Sci 97:305–311
Sakatani S, Yamada K, Homma C et al (2009) Deletion of RAGE causes hyperactivity and increased sensitivity to auditory stimuli in mice. PLoS One 4:E8309. doi:10.1371/journal.pone.0008309
Zhou Z, Immel D, Xi CX et al (2006) Regulation of osteoclast function and bone mass by RAGE. J Exp Med 203:1067–1080
Queisser MA, Kouri FM, Konigshoff M et al (2008) Loss of RAGE in pulmonary fibrosis—molecular relations to functional changes in pulmonary cell types. Am J Respir Cell Mol Biol 39:337–345
Hancock DB, Eijgelsheim M, Wilk JB et al (2010) Meta-analyses of genome-wide association studies identify multiple loci associated with pulmonary function. Nat Genet 42:45–52
Repapi E, Sayers I, Wain LV et al (2010) Genome-wide association study identifies five loci associated with lung function. Nat Genet 42:36–44
Hudson BI, Stickland MH, Grant PJ (1998) Identification of polymorphisms in the receptor for advanced glycation end products (RAGE) gene—prevalence in type 2 diabetes and ethnic groups. Diabetes 47:1155–1157
Castaldi P, Cho M, Litonjua A et al (2011) The association of genome-wide significant spirometric loci with chronic obstructive pulmonary disease susceptibility. Am J Respir Cell Mol Biol 45:1147–1153
Schenk S, Schraml P, Bendik I et al (2001) A novel polymorphism in the promoter of the RAGE gene is associated with non-small cell lung cancer. Lung Cancer 32:7–12
Cunha C, Giovannini G, Pierini A et al (2011) Genetically-determined hyperfunction of the S100B/RAGE axis is a risk factor for aspergillosis in stem cell transplant recipients. PLoS One 6:e27962. doi:10.1371/journal.pone.0027962
Hudson BI, Stickland MH, Futers TS et al (2001) Effects of novel polymorphisms in the RAGE gene on transcriptional regulation and their association with diabetic retinopathy. Diabetes 50:1505–1511
Forbes JM, Soderlund J, Yap FYT et al (2011) Receptor for advanced glycation end-products (RAGE) provides a link between genetic susceptibility and environmental factors in type 1 diabetes (vol 54, pg 1032, 2011). Diabetologia 54:1586–1587
Kucukhuseyin O, Yilmaz-Aydogan H, Isbir C et al (2011) Is there any association between GLY82 ser polymorphism of rage gene and Turkish diabetic and non diabetic patients with coronary artery disease? Mol Biol Rep 39:4423–4428. doi:1007/s11033-011-1230-3, Epub ahead of print
Kumaramanickavel G, Ramprasad VL, Sripriya S et al (2002) Association of Gly82Ser polymorphism in the RAGE gene with diabetic retinopathy in type II diabetic Asian Indian patients. J Diabetes Complications 16:391–394
Laki J, Kiszel P, Vatay A et al (2007) The HLA 8.1 ancestral haplotype is strongly linked to the C allele of -429 T > C promoter polymorphism of receptor of the advanced glycation endproduct (RAGE) gene. Haplotype-independent association of the -429C allele with high hemoglobin(A1C) levels in diabetic patients. Mol Immunol 44:648–655
Prasad P, Tiwari AK, Kumar KMP et al (2010) Association analysis of ADPRT1, AKR1B1, RAGE, GFPT2 and PAI-1 gene polymorphisms with chronic renal insufficiency among Asian Indians with type-2 diabetes. BMC Med Genet 11:52. doi:10.1186/1471-2350-11-52
Prevost G, Fajardy I, Besmond C et al (2005) Polymorphisms of the receptor of advanced glycation endproducts (RAGE) and the development of nephropathy in type 1 diabetic patients. Diabetes Metab 31:35–39
Sullivan C, Futers T, Barrett J et al (2005) RAGE polymorphisms and the heritability of insulin resistance: the Leeds family study. Diab Vasc Dis Res 2:42–44
Balasubbu S, Sundaresan P, Rajendran A et al (2010) Association analysis of nine candidate gene polymorphisms in Indian patients with type 2 diabetic retinopathy. BMC Med Genet 11:158. doi:10.1186/1471-2350-11-158
Daborg J, von Otter M, Sjolander A et al (2010) Association of the RAGE G82S polymorphism with Alzheimer’s disease. J Neural Transm 117:861–867
Gao JX, Shao YH, Lai WY et al (2010) Association of polymorphisms in the RAGE gene with serum CRP levels and coronary artery disease in the Chinese Han population. J Hum Genet 55:668–675
Hofmann MA, Drury S, Hudson BI et al (2002) RAGE and arthritis: the G82S polymorphism amplifies the inflammatory response. Genes Immun 3:123–135
Kanková K, Záhejský J, Márová I et al (2001) Polymorphisms in the RAGE gene influence susceptibility to diabetes-associated microvascular dermatoses in NIDDM. J Diabetes Complications 15:185–192
Li K, Dai D, Zhao B et al (2010) Association between the RAGE G82S polymorphism and Alzheimer’s disease. J Neural Transm 117:97–104
Li KS, Zhao B, Dai DW et al (2011) A functional p. 82G > S polymorphism in the RAGE gene is associated with multiple sclerosis in the Chinese population. Mult Scler 17:914–921
Jang Y, Kim JY, Kang SM et al (2007) Association of the Gly82Ser polymorphism in the receptor for advanced glycation end products (RAGE) gene with circulating levels of soluble RAGE and inflammatory markers in nondiabetic and nonobese Koreans. Metabolism 56:199–205
Kim OY, Jo SH, Jang Y et al (2009) G allele at RAGE SNP82 is associated with proinflammatory markers in obese subjects. Nutr Res 29:106–113
Mokbel A, Rashid L, Al-Harizy R (2011) Decreased level of soluble receptors of advanced glycated end products (sRAGE) and glycine82serine (G82S) polymorphism in Egyptian patients with RA. The Egyptian Rheumatologist 33:53–60
Boor P, Celec P, Klenovicsova K et al (2010) Association of biochemical parameters and RAGE gene polymorphisms in healthy infants and their mothers. Clin Chim Acta 411:1034–1040
Gaens KHJ, Ferreira I, van der Kallen CJH et al (2009) Association of polymorphism in the receptor for advanced glycation end products (RAGE) gene with circulating RAGE levels. J Clin Endocrinol Metab 94:5174–5180
Peng WH, Lu L, Wang LJ et al (2009) RAGE gene polymorphisms are associated with circulating levels of endogenous secretory RAGE but not with coronary artery disease in Chinese patients with type 2 diabetes mellitus. Arch Med Res 40:393–398
Lindström O, Tukiainen E, Kylänpää L et al (2009) Circulating levels of a soluble form of receptor for advanced glycation end products, and high-mobility group box chromosomal protein 1 in patients with acute pancreatitis. Pancreas 38:E215–E220
Caillier SJ, Briggs F, Cree BAC et al (2008) Uncoupling the roles of HLA-DRB1 and HLA-DRB5 genes in multiple sclerosis. J Immunol 181:5473–5480
Kalea AZ, Schmidt AM, Hudson BI (2009) RAGE: a novel biological and genetic marker for vascular disease. Clin Sci 116:621–637
Lindholm E, Bakhtadze E, Cilio C et al (2008) Association between LTA. TNF and AGER polymorphisms and late diabetic complications. PLoS One 3:e2546. doi:10.1371/journal.pone.0002546
Zhao X, Kuja-Panula J, Rouhiainen A et al (2011) High mobility group box-1 (HMGB1; amphoterin) is required for zebrafish brain development. J Biol Chem 286:23200–23213
Suchankova P, Klang J, Cavanna C et al (2011) Is the Gly82Ser polymorphism in the RAGE gene relevant to schizophrenia and the personality trait psychoticism? J Psychiatry Neurosci 36. doi:10.1503/jpn.110024, Epub ahead of print
Lu W, Feng B (2010) The -374A allele of the RAGE gene as a potential protective factor for vascular complications in type 2 diabetes: a meta-analysis. Tohoku J Exp Med 220:291–297
Raulo E, Tumova S, Pavlov I et al (2005) The two thrombospondin type I repeat domains of the heparin-binding growth-associated molecule bind to heparin/heparan sulfate and regulate neurite extension and plasticity in hippocampal neurons. J Biol Chem 280:41576–41583
Salmivirta M, Rauvala H, Elenius K et al (1992) Neurite growth-promoting protein (amphoterin, p30) binds syndecan. Exp Cell Res 200:444–451
Milev P, Chiba A, Häring M et al (1998) High affinity binding and overlapping localization of neurocan and phosphacan protein-tyrosine phosphatase-zeta/beta with tenascin-R, amphoterin, and the heparin-binding growth-associated molecule. J Biol Chem 273:6998–7005
Narindrasorasak S, Lowery D, Gonzalezdewhitt P et al (1991) High-affinity interactions between the alzheimers beta-amyloid precursor proteins and the basement-membrane form of heparan-sulfate proteoglycan. J Biol Chem 266:12878–12883
Kanekiyo T, Zhang JA, Liu QA et al (2011) Heparan sulphate proteoglycan and the low-density lipoprotein receptor-related protein 1 constitute major pathways for neuronal amyloid-beta uptake. J Neurosci 31:1644–1651
Johnson GB, Brunn GJ, Kodaira Y et al (2002) Receptor-mediated monitoring of tissue well-being via detection of soluble heparan sulfate by toll-like receptor 4. J Immunol 168:5233–5239
Schaefer L, Babelova A, Kiss E et al (2005) The matrix component biglycan is proinflammatory and signals through toll-like receptors 4 and 2 in macrophages. J Clin Invest 115:2223–2233
Popovic PJ, DeMarco R, Lotze MT et al (2006) High mobility group B1 protein suppresses the human plasmacytoid dendritic cell response to TLR9 agonists. J Immunol 177:8701–8707
Iwami K, Matsuguchi T, Masuda A et al (2000) Cutting edge: naturally occurring soluble form of mouse toll-like receptor 4 inhibits lipopolysaccharide signaling. J Immunol 165:6682–6686
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer Science+Business Media New York
About this protocol
Cite this protocol
Rouhiainen, A., Kuja-Panula, J., Tumova, S., Rauvala, H. (2013). RAGE-Mediated Cell Signaling. In: Heizmann, C. (eds) Calcium-Binding Proteins and RAGE. Methods in Molecular Biology, vol 963. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-230-8_15
Download citation
DOI: https://doi.org/10.1007/978-1-62703-230-8_15
Published:
Publisher Name: Humana Press, Totowa, NJ
Print ISBN: 978-1-62703-229-2
Online ISBN: 978-1-62703-230-8
eBook Packages: Springer Protocols