[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Nonparametric Methods for Molecular Biology

  • Protocol
  • First Online:
Statistical Methods in Molecular Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 620))

Abstract

In 2003, the completion of the Human Genome Project (1) together with advances in computational resources (2) were expected to launch an era where the genetic and genomic contributions to many common diseases would be found. In the years following, however, researchers became increasingly frustrated as most reported ‘findings’ could not be replicated in independent studies (3). To improve the signal/noise ratio, it was suggested to increase the number of cases to be included to tens of thousands (4), a requirement that would dramatically restrict the scope of personalized medicine. Similarly, there was little success in elucidating the gene–gene interactions involved in complex diseases or even in developing criteria for assessing their phenotypes. As a partial solution to these enigmata, we here introduce a class of statistical methods as the ‘missing link’ between advances in genetics and informatics. As a first step, we provide a unifying view of a plethora of nonparametric tests developed mainly in the 1940s, all of which can be expressed as u-statistics. Then, we will extend this approach to reflect categorical and ordinal relationships between variables, resulting in a flexible and powerful approach to deal with the impact of (1) multiallelic genetic loci, (2) poly-locus genetic regions, and (3) oligo-genetic and oligo-genomic collaborative interactions on complex phenotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
GBP 34.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 127.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 159.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 179.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Collins, F. S., Green, E. D., Guttmacher, A. E., and Guyer, M. S. (2003) A vision for the future of genomics research, Nature 422, 835–847.

    Article  PubMed  CAS  Google Scholar 

  2. Butler, D. (2003) The Grid: tomorrow’s computing today, Nature 422, 799–800.

    Article  PubMed  CAS  Google Scholar 

  3. Pearson, T. A., and Manolio, T. A. (2008) How to interpret a genome-wide association study, JAMA 299, 1335–1344.

    Article  PubMed  CAS  Google Scholar 

  4. Psychiatric, GWAS Consortium Coardinating Committee (2009) Genomewide association studies: history, rationale, and prospects for psychiatric disorders, Am J Psychiatry 166, 540–556.

    Google Scholar 

  5. Scheffé, H. (1959) The Analysis of Variance, Wiley, New York, NY.

    Google Scholar 

  6. Arbuthnot, J. (1710) An argument for divine providence taken from the constant regularity observ’d in the births of both sexes, Philos Trans R Soc London 27, 186–190.

    Google Scholar 

  7. Fisher, R. A. (1935) The Design of Experiments, Oliver & Boyd, Edinburgh.

    Google Scholar 

  8. Cliff, N. (1996) Answering ordinal questions with ordinal data using ordinal statistics, Multivariate Behav Res 31,; 331–350.

    Article  Google Scholar 

  9. Cliff, N. (1996) Ordinal Methods for Behavioral Data Analysis, Lawrence Erlbaum, Mahwah, NJ.

    Google Scholar 

  10. Wilcoxon, F. (1954) Individual comparisons by ranking methods, Biometrics 1, 80–83.

    Google Scholar 

  11. Mann, H. B., and Whitney, D. R. (1947) On a test of whether one of two random variables is stochastically larger than the other, Ann Math Stat 18, 50–60.

    Article  Google Scholar 

  12. Kruskal, W. H., and Wallis, W. A. (1952) Use of ranks in one-criterion variance analysis, J Am Stat Assoc 47, 583–631.

    Article  Google Scholar 

  13. Lewis, C. T., and Short, C. (1879) A Latin Dictionnairy, Clarendon, Oxford.

    Google Scholar 

  14. Georges, K. E. (1918) Ausführliches lateinisch-deutsches Handwörterbuch, Hahn, Hannover.

    Google Scholar 

  15. Tusher, V. G., Tibshirani, R., and Chu, G. (2001) Significance analysis of microarrays applied to the ionizing radiation response (vol 98, pg 5116), Proc Natl Acad Sci USA 98, 10515–10515.

    Google Scholar 

  16. van de Wiel, M. A. (2004) Significance analysis of microarrays using rank scores, Kwantitatieve Methoden 71, 25–37.

    Google Scholar 

  17. Wang, Z., Gerstein, M., and Snyder, M. (2009) RNA-Seq: a revolutionary tool for transcriptomics, Nat Rev Genet 10,; 57–63.

    Article  PubMed  CAS  Google Scholar 

  18. McNemar, Q. (1947) Note on the sampling error of the differences between correlated proportions or percentages, Psychometrica 12, 153–157.

    Article  CAS  Google Scholar 

  19. Gauss, C. F. (1823) Theoria combinationis observationum erroribus minimis obnoxiae, Dieterich, Goettingen.

    Google Scholar 

  20. Coakley, C. W., and Heise, M. A. (1996) Versions of the sign test in the presence of ties, Biometrics 52, 1242–1251.

    Article  Google Scholar 

  21. Dixon, W. J., and Mood, A. M. (1946) The statistical sign test, J Am Stat Assoc 41,; 557–566.

    Article  PubMed  CAS  Google Scholar 

  22. Dixon, W. J., and Massey, F. J. J. (1951) An Introduction to Statistical Analysis, McGraw-Hill, New York.

    Google Scholar 

  23. Rayner, J. C. W., and Best, D. J. (1999) Modelling ties in the sign test, Biometrics 55, 663–665.

    Article  PubMed  CAS  Google Scholar 

  24. Rao, P. V., and Kupper, L. L. (1967) Ties in paired-comparison experiments: a generalization of the Bradley–Terry model, J Am Stat Assoc 62, 194–204.

    Article  Google Scholar 

  25. David, H. A. (1988) The Method of Paired Comparisons, 2nd ed., Griffin, London.

    Google Scholar 

  26. Stern, H. A. L. (1990) A continuum of paired comparisons models, Biometrika 77, 265–273.

    Article  Google Scholar 

  27. Yan, T., Yang, Y. N., Cheng, X., DeAngelis, M. M., Hoh, J., and Zhang, H. (2009) Genotypic Association Analysis Using Discordant-Relative-Pairs, Ann Hum Genet 73, 84–94.

    Article  PubMed  CAS  Google Scholar 

  28. Spielman, R. S., McGinnis, R. E., and Ewens, W. J. (1993) Transmission test for linkage disequilibrium: the insulin gene region and insulin-dependent diabetes mellitus (IDDM), Am J Hum Genet 52,; 506–516.

    PubMed  CAS  Google Scholar 

  29. Wittkowski, K. M. (1998) Versions of the sign test in the presence of ties, Biometrics 54, 789–791.

    Article  Google Scholar 

  30. Wittkowski, K. M. (1989) An asymptotic UMP sign test for discretized data, Statistician 38, 93–96.

    Article  Google Scholar 

  31. Wittkowski, K. M., and Liu, X. (2002) A statistically valid alternative to the TDT, Hum Hered 54, 157–164.

    Article  PubMed  CAS  Google Scholar 

  32. Sasieni, P. D. (1997) From genotypes to genes: doubling the sample size, Biometrics 53, 1253–1261.

    Article  PubMed  CAS  Google Scholar 

  33. Wittkowski, K. M. (1988) Friedman-type statistics and consistent multiple comparisons for unbalanced designs, J Am Stat Assoc 83, 1163–1170.

    Article  Google Scholar 

  34. Student. (1908) On the probable error of a mean, Biometrika 6, 1–25.

    Google Scholar 

  35. Ramagopalan, S. V., McMahon, R., Dyment, D. A., Sadovnick, A. D., Ebers, G. C., and Wittkowski, K. M. (2009) An extension to a statistical approach for family based association studies provides insights into genetic risk factors for multiple sclerosis in the HLA-DRB1 gene, BMC Med Genetics; 10, 10.

    Google Scholar 

  36. Hafler, D. A., Compston, A., Sawcer, S., Lander, E. S., Daly, M. J., De Jager, P. L., de Bakker, P. I. W., Gabriel, S. B., Mirel, D. B., Ivinson, A. J., Pericak-Vance, M. A., Gregory, S. G., Rioux, J. D., McCauley, J. L., Haines, J. L., Barcellos, L. F., Cree, B., Oksenberg, J. R., and Hauser, S. L. (2007) Risk alleles for multiple sclerosis identified by a genomewide study, N Engl J Med 357,; 851–862.

    Article  PubMed  CAS  Google Scholar 

  37. Barcellos, L. F., Sawcer, S., Ramsay, P. P., Baranzini, S. E., Thomson, G., Briggs, F., Cree, B. C., Begovich, A. B., Villoslada, P., Montalban, X., Uccelli, A., Savettieri, G., Lincoln, R. R., DeLoa, C., Haines, J. L., Pericak-Vance, M. A., Compston, A., Hauser, S. L., and Oksenberg, J. R. (2006) Heterogeneity at the HLA-DRB1 locus and risk for multiple sclerosis, Hum Mol Genet 15, 2813–2824.

    Article  PubMed  CAS  Google Scholar 

  38. Ramagopalan, S., and Ebers, G. (2009) Multiple sclerosis: major histocompatibility complexity and antigen presentation, Genome Med 1, 105.

    Article  Google Scholar 

  39. Suárez-Fariñas, M., Haider, A., and Wittkowski, K. M. (2005) “Harshlighting” small blemishes on microarrays, BMC Bioinformatics 6, 65.

    Article  PubMed  Google Scholar 

  40. Suarez-Farinas, M., Pellegrino, M., Wittkowski, K. M., and Magnasco, M. O. (2005) Harshlight: a “corrective make-up” program for microarray chips, BMC Bioinformatics 6, 294.

    Article  PubMed  Google Scholar 

  41. Arteaga-Salas, J. M., Harrison, A. P., and Upton, G. J. G. (2008) Reducing spatial flaws in oligonucleotide arrays by using neighborhood information, Stat Appl Genet Mol Biol 7, 19.

    Google Scholar 

  42. Arteaga-Salas, J. M., Zuzan, H., Langdon, W. B., Upton, G. J. G., and Harrison, A. P. (2008) An overview of image-processing methods for Affymetrix GeneChips, Brief Bioinform 9, 25–33.

    Article  PubMed  CAS  Google Scholar 

  43. Cairns, J. M., Dunning, M. J., Ritchie, M. E., Russell, R., and Lynch, A. G. (2008) BASH: a tool for managing BeadArray spatial artefacts, Bioinformatics 24,; 2921–2922.

    Article  PubMed  CAS  Google Scholar 

  44. Deuchler, G. (1914) Über die Methoden der Korrelationsrechnung in der Pädagogik und Psychologie, Z pädagog Psychol 15, 114–131, 145–159, 229–242.

    Google Scholar 

  45. Morales, J. F., Song, T., Auerbach, A. D., and Wittkowski, K. M. (2008) Phenotyping genetic diseases using an extension of μ-scores for multivariate data, Stat Appl Genet Mol Biol 7, 19.

    Google Scholar 

  46. Kehoe, J. F., and Cliff, N. (1975) Interord: a computer-interactive Fortran iv program for developing simple orders, Educ Psychol Meas 35, 675–678.

    Article  Google Scholar 

  47. Kruskal, W. H. (1957) Historical notes on the Wilcoxon unpaired two-sample test, J Am Stat Assoc 52, 356–360.

    Article  Google Scholar 

  48. Friedman, M. (1937) The use of ranks to avoid the assumption of normality implicit in the analysis of variance, J Am Stat Assoc 32, 675–701.

    Article  Google Scholar 

  49. Iain, M., and Urken, A. B. (1995) On elections by ballot, in Classics of Social Choice (Iain, M., and Urken, A. B., Eds.),; pp. 83–89, University of Michigan Press, Ann Arbor, MI.

    Google Scholar 

  50. Hägerle, G., and Puckelsheim, F. (2001) Llull’s writings on electorial systems, Stud Lulliana 41, 3–38.

    Google Scholar 

  51. Benard, A., and Van Elteren, P. H. (1953) A generalization of the method of m rankings, Indagationes Math 15, 358–369.

    Google Scholar 

  52. van Elteren, P., and Noether, G. E. (1959) The asymptotic efficiency of the chi_r^2-test for a balanced incomplete block design, Biometrika 46, 475–477.

    Article  Google Scholar 

  53. Durbin, J. (1951) Incomplete blocks in ranking experiments, Br J Psychol 4, 85–90.

    Google Scholar 

  54. Bradley, R. A., and Milton, E. T. (1952) Rank analysis of incomplete block designs: I. The method of Paired comparisons, Biometrika 39, 324–345.

    Google Scholar 

  55. Prentice, M. J. (1979) On the problem of m incomplete rankings, Biometrika 66,; 167–170.

    Article  Google Scholar 

  56. Alvo, M., and Cabilio, P. (2005) General scores statistics on ranks in the analysis of unbalanced designs, Can J Stat 33,; 115–129.

    Article  Google Scholar 

  57. Gao, X., and Alvo, M. (2005) A unified nonparametric approach for unbalanced factorial designs, J Am Stat Assoc 100, 926–941.

    Article  CAS  Google Scholar 

  58. Lam, F. C., and Longnecker, M. T. (1983) A modified Wilcoxon rank sum test for paired data, Biometrika 70, 510–513.

    Article  Google Scholar 

  59. Cronbach, L. J., and Meehl, P. E. (1955) Construct validity in psychological tests, Psychol Bull 52, 281–302.

    Article  PubMed  CAS  Google Scholar 

  60. Popper, K. R. (1937) Logik der Forschung, Julius Springer, Wien.

    Google Scholar 

  61. Delbecq, A. (1975) Group techniques for program planning, Scott Foresman, Glenview, IL .

    Google Scholar 

  62. Wittkowski, K. M., Song, T., Anderson, K., and Daniels, J. E. (2008) U-scores for multivariate data in sports, J Quant Anal Sports 4, 7.

    Google Scholar 

  63. Freimer, N., and Sabatti, C. (2003) The human phenome project, Nat Genet 34,; 15–21.

    Article  PubMed  CAS  Google Scholar 

  64. Wittkowski, K. M. (1980) Ein nichtparametrischer Test im Stufenblockplan [A nonparametric test for the step-down design], Institut für Medizinische Statistik, Georg-August-Universität,; Göttingen, D.

    Google Scholar 

  65. Wittkowski, K. M. (1984) Semiquantitative Merkmale in der nichtparametrischen Statistik, in Der beitrag der informationsverarbeitung zum fortschritt der medizin (Köhler, C. O., Wagner, E., and Tautu, P., Eds.), pp. 100–105, Springer, Berlin, D.

    Google Scholar 

  66. Wittkowski, K. M. (1988) Small sample properties of rank tests for incomplete unbalanced designs, Biom J 30,; 799–808.

    Article  Google Scholar 

  67. Wittkowski, K. M. (1992) An extension to Wittkowski, J Am Stat Assoc 87, 258.

    Article  Google Scholar 

  68. Einsele, H., Ehninger, G., Hebart, H., Wittkowski, K. M., Schuler, U., Jahn, G., Mackes, P., Herter, M., Klingebiel, T., Löffler, J., et al. (1995) Polymerase chain reaction monitoring reduces the incidence of cytomegalovirus disease and the duration and side effects of antiviral therapy after bone marrow transplantation, Blood 86, 2815–2820.

    PubMed  CAS  Google Scholar 

  69. Talaat, M., Wittkowski, K. M., Husein, M. H., and Barakat, R. (1998) A new procedure to access individual risk of exposure to cercariae from multivariate questionnaire data, in Reproductive Health and Infectious Diseases in the Middle East (Barlow, R., and Brown, J. W., Eds.), pp. 167–174, Ashgate, Aldershot, UK.

    Google Scholar 

  70. Susser, E., Desvarieux, M., and Wittkowski, K. M. (1998) Reporting sexual risk behavior for HIV: a practical risk index and a method for improving risk indices, Am J Public Health 88, 671–674.

    Article  PubMed  CAS  Google Scholar 

  71. Wittkowski, K. M., Susser, E., and Dietz, K. (1998) The protective effect of condoms and nonoxynol-9 against HIV infection, Am J Public Health 88, 590–596, 972.

    Article  PubMed  CAS  Google Scholar 

  72. Banchereau, J., Palucka, A. K., Dhodapkar, M., Kurkeholder, S., Taquet, N., Rolland, A., Taquet, S., Coquery, S., Wittkowski, K. M., Bhardwj, N., Pineiro, L., Steinman, R., and Fay, J. (2001) Immune and clinical responses after vaccination of patients with metastatic melanoma with CD34+ hematopoietic progenitor-derived dendritic cells, Cancer Res 61, 6451–6458.

    PubMed  CAS  Google Scholar 

  73. Hoeffding, W. (1948) A class of statistics with asymptotically normal distribution, Ann Math Stat 19, 293–325.

    Article  Google Scholar 

  74. Wittkowski, K. M. (2003) Novel methods for multivariate ordinal data applied to genetic diplotypes, genomic pathways, risk profiles, and pattern similarity, Comput Sci Stat 35, 626–646.

    Google Scholar 

  75. Wittkowski, K. M., and Liu, X. (2004) Beyond the TDT: rejoinder to Ewens and Spielman, Hum Hered 58, 60–61.

    Article  Google Scholar 

  76. Wittkowski, K. M., Lee, E., Nussbaum, R., Chamian, F. N., and Krueger, J. G. (2004) Combining several ordinal measures in clinical studies, Stat Med 23, 1579–1592.

    Article  PubMed  Google Scholar 

  77. Gehan, E. A. (1965) A generalised two-sample Wilcoxon test for doubly censored samples, Biometrika 52, 650–653.

    PubMed  CAS  Google Scholar 

  78. Gehan, E. A. (1965) A generalised Wilcoxon test for comparing arbitrarily singly censored samples, Biometrika 52, 203–223.

    PubMed  CAS  Google Scholar 

  79. Schemper, M. (1983) A nonparametric; k-sample test for data defined by intervals, Stat Neerl 37, 69–71.

    Article  Google Scholar 

  80. Lehmann, E. L. (1951) Consistency and unbiasedness of certain nonparametric tests, Ann Math Stat 22, 165–179.

    Article  Google Scholar 

  81. Hoeffding, W. (1994) The Collected Works of Wassily Hoeffding, Springer, New York.

    Google Scholar 

  82. Rosenbaum, P. G. (1994) Coherence in observationsl studies, Biometrics 50,; 368–374.

    Article  PubMed  CAS  Google Scholar 

  83. Song, T., Coffran, C., and Wittkowski, K. M. (2007) Screening for gene expression profiles and epistasis between diplotypes with S-Plus on a grid, Stat Comput Graph 18,; 20–25.

    Google Scholar 

  84. Cherchye, L., and Vermeulen, F. (2006) Robust rankings of multidimensional performances: an application to Tour de France racing cyclists, J Sports Econ 7, 359–373.

    Article  Google Scholar 

  85. Quaia, E., D’Onofrio, M., Cabassa, P., Vecchiato, F., Caffarri, S., Pittiani, F., Wittkowski, K. M., and Cova, M. A. (2007) Diagnostic value of hepatocellular nodule vascularity after microbubble injection for characterizing malignancy in patients with cirrhosis, Am J Roentgenol 189, 1474–1483.

    Google Scholar 

  86. Ramamoorthi, R. V., Rossano, M. G., Paneth, N., Gardiner, J. C., Diamond, M. P., Puscheck, E., Daly, D. C., Potter, R. C., and Wirth, J. J. (2008) An application of multivariate ranks to assess effects from combining factors: Metal exposures and semen analysis outcomes, Stat Med 27, 3503–3514.

    Article  PubMed  CAS  Google Scholar 

  87. Shockley, W., Bardeen, J., and Brattain, W. H. (1948) The electronic theory of the transistor, Science 108, 678–679.

    Google Scholar 

  88. Haberle, L., Pfahlberg, A., and Gefeller, O. (2009) Assessment of multiple ordinal endpoints, Biom J 51, 217–226.

    Article  PubMed  Google Scholar 

  89. O’Brien, P. C. (1984) Procedures for comparing samples with multiple endpoints, Biometrics 40, 1079–1087.

    Article  PubMed  Google Scholar 

  90. Diana, M., Song, T., and Wittkowski, K. (2009) Studying travel-related individual assessments and desires by combining hierarchically structured ordinal variables, Transp 36, 187–206.

    Article  Google Scholar 

  91. Kendall, M. G. (1938) A new measure of rank correlation, Biometrika 30,; 81–93.

    Google Scholar 

  92. Jonckheere, A. R. (1954) A distribution-free k-sample test against ordered alternatives, Biometrika 41, 133–145.

    Google Scholar 

  93. Terpstra, T. J. (1952) The asymptotic normality and consistency of Kendall’s test against trend when ties are present in one ranking, Indagationes Math 14, 327–333.

    Google Scholar 

  94. Spangler, R., Wittkowski, K. M., Goddard, N. L., Avena, N. M., Hoebel, B. G., and Leibowitz, S. F. (2004) Opiate-like effects of sugar on gene expression in reward areas of the rat brain, Mol Brain Res 124,; 134–142.

    Article  PubMed  CAS  Google Scholar 

  95. Morales, J. F., Song, T., Wittkowski, K. M., and Auerbach, A. D. (submitted) A statistical systems biology approach to FANCC gene expression suggests drug targets for Fanconi anemia.

    Google Scholar 

  96. Armitage, P. (1955) Tests for linear trends in proportions and frequencies, Biometrics 11, 375–386.

    Article  Google Scholar 

  97. Janka, G. E., and Schneider, E. M. (2004) Modern management of children with haemophagocytic lymphohistiocytosis, Br J Haematol 124, 4–14.

    Article  PubMed  Google Scholar 

  98. Seybold, M. P., Wittkowski, K. M., and Schneider, E. M. (2008) Biomarker; analysis using a non-parametric selection procedure to discriminate the phagocytic syndromes HLH (hemophagocytic lymphohistiocytosis) and mas (macrophage activation syndrome), Shock 29, 90.

    Google Scholar 

  99. Kraft, P., and Hunter, D. J. (2009) Genetic risk prediction – Are we there yet?, N Engl J Med 360, 1701–1703.

    Article  PubMed  CAS  Google Scholar 

  100. Wittkowski, K. M. (1990) Statistical knowledge-based systems – critical remarks and requirements for approval, Comput Methods Programs Biomed 33, 255–259.

    Article  PubMed  CAS  Google Scholar 

  101. Akritas, M. G., Arnold, S. F., and Brunner, E. (1997) Nonparametric hypotheses and rank statistics for unbalanced factorial designs. Part I, J Am Stat Assoc 92,; 258–265.

    Article  Google Scholar 

  102. Brunner, E., Munzel, U., and Puri, M. L. (1999) Rank-score tests in factorial designs with repeated measures, J Multivar Anal 70, 286–317.

    Article  Google Scholar 

Download references

Acknowledgments

The work was supported in part by Grant No. UL1RR024143 from the U.S. National Center for Research Resources (NCRR). Of the many colleagues who have contributed to this chapter through discussions and suggestions, I would like to thank, in particular, Jose F. Morales, Ephraim Sehayek, Sreeram Ramagopalan, and Martina Durner for their input on the biological background, Sreeram Ramagopalan, Bill Raynor, and Norman Cliff for their helpful comments, an anonymous reviewer for an inspiring discussion, and Daniel Eckardt for help with Latin grammar.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Wittkowski, K.M., Song, T. (2010). Nonparametric Methods for Molecular Biology. In: Bang, H., Zhou, X., van Epps, H., Mazumdar, M. (eds) Statistical Methods in Molecular Biology. Methods in Molecular Biology, vol 620. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-580-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-580-4_2

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-578-1

  • Online ISBN: 978-1-60761-580-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics