Abstract
The chronological life span of yeast, which is measured as the survival time of populations of nondividing cells, has been used successfully for the identification of key pathways responsible for the regulation of aging. These pathways have remarkable similarities with those that regulate the life span in higher eukaryotes, suggesting that longevity depends on the activity of genes and signaling pathways that share a common evolutionary origin Thus, the unicellular Saccharomyces cerevisiae is a simple model system that can provide significant insights into the human genetics and molecular biology of aging. Here, we describe the standard procedures to measure the chronological life span, including both the normal and calorie restriction paradigms.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Fabrizio, P., Pozza, F., Pletcher, S. D., Gendron, C. M., and Longo, V. D. (2001) Regulation of longevity and stress resistance by Sch9 in yeast. Science 292, 288–290.
Longo, V. D. and Finch, C. E. (2003) Evolutionary medicine: from dwarf model systems to healthy centenarians? Science 299, 1342–1346.
Bitterman, K. J., Medvedik, O., and Sinclair, D. A. (2003) Longevity regulation in Saccharomyces cerevisiae: linking metabolism, genome stability, and heterochromatin. Microbiol. Mol. Biol. Rev. 67, 376–399.
Werner-Washburne, M., Braun, E., Johnston, G. C., and Singer, R. A. (1993) Stationary phase in the yeast Saccharomyces cerevisiae. Microbiol. Rev. 57, 383–401.
Fabrizio, P., Battistella, L., Vardavas, R., et al. (2004) Superoxide is a mediator of an altruistic aging program in Saccharomyces cerevisiae. J. Cell Biol. 166, 1055–1067.
Gray, J. V., Petsko, G. A., Johnston, G. C., Ringe, D., Singer, R. A., and Wemer-Washburne, M. (2004) “Sleeping Beauty”: quiescence in Saccharomyces Cerevisiae. Microbiol. Mol. Biol. Rev. 68, 187–206.
Dorman, J. B., Albinder, B., Shroyer, T., and Kenyon, C. (1995) The age-1 and daf-2 genes function in a common pathway to control the lifespan of Caenorhabditis elegans. Genetics 141, 1399–1406.
Lillie, S. H. and Pringle, J. R. (1980) Reserve carbohydrate metabolism in Saccharomyces cerevisiae: responses to nutrient limitation. J. Bacterial. 143, 1384–1394.
Pedruzzi, I., Burckert, N., Egger, P., and De Virgilio, C. (2000) Saccharomyces cerevisiae Ras/cAMP pathway controls post-diauxic shift element-dependent transcription through the zinc finger protein Gis1. Embo J. 19, 2569–2579.
Fabrizio, P., Liou, L. L., Moy, V. N., et al. (2003) SOD2 functions downstream of Sch9 to extend longevity in yeast. Genetics 163, 35–46.
Guthrie, C. and Fink, G. R. (1991) in Guide to Yeast Genetics and Molecular Biology Vol. 194. Academic, San Diego.
Zambrano, M. M. and Kolter, R. (1996) GASPing for life in stationary phase. Cell 86, 181–184.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2007 Humana Press Inc., Totowa, NJ
About this protocol
Cite this protocol
Fabrizio, P., Longo, V.D. (2007). The Chronological Life Span of Saccharomyces cerevisiae . In: Tollefsbol, T.O. (eds) Biological Aging. Methods in Molecular Biology™, vol 371. Humana Press. https://doi.org/10.1007/978-1-59745-361-5_8
Download citation
DOI: https://doi.org/10.1007/978-1-59745-361-5_8
Publisher Name: Humana Press
Print ISBN: 978-1-58829-658-0
Online ISBN: 978-1-59745-361-5
eBook Packages: Springer Protocols