[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Noise-Induced Hearing Loss: Permanent Versus Temporary Threshold Shifts and the Effects of Hair Cell Versus Neuronal Degeneration

  • Conference paper
The Effects of Noise on Aquatic Life II

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 875))

Abstract

For decades, research on permanent noise-induced hearing loss has concentrated on the death of sensory hair cells and the associated threshold elevations. Recent work has shown that cochlear neurons are actually more vulnerable to noise, and even after exposures causing only temporary threshold elevation and no loss of hair cells, there is a rapid and irreversible loss of synaptic connections between cochlear neurons and hair cells followed by a slow degeneration of cochlear nerve cell bodies and central axons. Although this noise-induced neuropathy does not affect the audiogram, it likely reduces performance on more complex auditory tasks such as speech discrimination in noise.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 359.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Bohne BA, Harding GW (2000) Degeneration in the cochlea after noise damage: primary versus secondary events. Am J Otol 21:505–509

    CAS  PubMed  Google Scholar 

  • Clark WW, Bohne BA, Boettcher FA (1987) Effect of periodic rest on hearing loss and cochlear damage following exposure to noise. J Acoust Soc Am 82:1253–1264

    Article  CAS  PubMed  Google Scholar 

  • Dallos P (2008) Cochlear amplification, outer hair cells and prestin. Curr Opin Neurobiol 18:370–376

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dallos P, Harris D (1978) Properties of auditory nerve responses in absence of outer hair cells. J Neurophysiol 41:365–383

    CAS  PubMed  Google Scholar 

  • Frisina DR, Frisina RD (1997) Speech recognition in noise and presbycusis: relations to possible neural mechanisms. Hear Res 106:95–104

    Article  CAS  PubMed  Google Scholar 

  • Furman AC, Kujawa SG, Liberman MC (2013) Noise-induced cochlear neuropathy is selective for fibers with low spontaneous rates. J Neurophysiol 110:577–586

    Article  PubMed Central  PubMed  Google Scholar 

  • Hamernik RP, Turrentine G, Roberto M, Salvi R, Henderson D (1984) Anatomical correlates of impulse noise-induced mechanical damage in the cochlea. Hear Res 13:229–247

    Article  CAS  PubMed  Google Scholar 

  • Johnsson LG (1974) Sequence of degeneration of Corti’s organ and its first-order neurons. Ann Otol Rhinol Laryngol 83:294–303

    Article  CAS  PubMed  Google Scholar 

  • Kemp DT (2002) Otoacoustic emissions, their origin in cochlear function, and use. Br Med Bull 63:223–241

    Article  PubMed  Google Scholar 

  • Kerr AG, Byrne JE (1975) Concussive effects of bomb blast on the ear. J Laryngol Otol 89:131–143

    Article  CAS  PubMed  Google Scholar 

  • Khimich D, Nouvian R, Pujol R, Tom Dieck S, Egner A, Gundelfinger ED, Moser T (2005) Hair cell synaptic ribbons are essential for synchronous auditory signalling. Nature 434:889–894

    Article  CAS  PubMed  Google Scholar 

  • Kujawa SG, Liberman MC (2009) Adding insult to injury: cochlear nerve degeneration after “temporary” noise-induced hearing loss. J Neurosci 29:14077–14085

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liberman MC (1980) Morphological differences among radial afferent fibers in the cat cochlea: an electron-microscopic study of serial sections. Hear Res 3:45–63

    Article  CAS  PubMed  Google Scholar 

  • Liberman MC (1982a) The cochlear frequency map for the cat: labeling auditory-nerve fibers of known characteristic frequency. J Acoust Soc Am 72:1441–1449

    Article  CAS  PubMed  Google Scholar 

  • Liberman MC (1982b) Single-neuron labeling in the cat auditory nerve. Science 216:1239–1241

    Article  CAS  PubMed  Google Scholar 

  • Liberman MC, Dodds LW (1984) Single-neuron labeling and chronic cochlear pathology. III. Stereocilia damage and alterations of threshold tuning curves. Hear Res 16:55–74

    Article  CAS  PubMed  Google Scholar 

  • Liberman MC, Dodds LW (1987) Acute ultrastructural changes in acoustic trauma: serial-section reconstruction of stereocilia and cuticular plates. Hear Res 26:45–64

    Article  CAS  PubMed  Google Scholar 

  • Liberman MC, Kiang NY (1978) Acoustic trauma in cats. Cochlear pathology and auditory-nerve activity. Acta Otolaryngol 358:1–63

    CAS  Google Scholar 

  • Liberman MC, Mulroy MJ (1982) Acute and chronic effects of acoustic trauma: cochlear pathology and auditory nerve pathophysiology. In: Hamernik RP, Henderson D, Salvi R (eds) New perspectives on noise-induced hearing loss. Raven Press, New York, pp 105–136

    Google Scholar 

  • Lin HW, Furman AC, Kujawa SG, Liberman MC (2011) Primary neural degeneration in the Guinea pig cochlea after reversible noise-induced threshold shift. J Assoc Res Otolaryngol 12:605–616. doi:10.1007/s10162-011-0277-0

    Article  PubMed Central  PubMed  Google Scholar 

  • Lobarinas E, Salvi R, Ding D (2013) Insensitivity of the audiogram to carboplatin induced inner hair cell loss in chinchillas. Hear Res 302:113–120

    Article  CAS  PubMed  Google Scholar 

  • Matsubara A, Laake JH, Davanger S, Usami S, Ottersen OP (1996) Organization of AMPA receptor subunits at a glutamate synapse: a quantitative immunogold analysis of hair cell synapses in the rat organ of Corti. J Neurosci 16:4457–4467

    CAS  PubMed  Google Scholar 

  • Melcher JR, Kiang NY (1996) Generators of the brainstem auditory evoked potential in cat. III: identified cell populations. Hear Res 93:52–71

    Article  CAS  PubMed  Google Scholar 

  • Miller JD, Watson CS, Covell WP (1963) Deafening effects of noise on the cat. Acta Oto-Laryngol Suppl 176

    Google Scholar 

  • Muller M, von Hunerbein K, Hoidis S, Smolders JW (2005) A physiological place-frequency map of the cochlea in the CBA/J mouse. Hear Res 202:63–73

    Article  PubMed  Google Scholar 

  • National Institute for Occupational Safety and Health (1998) Criteria for a recommended standard: occupational noise exposure. Revised criteria 1998. DHHS Publication No. 98-126, National Institute for Occupational Safety and Health, Department of Health and Human Services, Cincinnati. Available at http://www.cdc.gov/niosh/98–126.html

  • Pujol R, Puel JL (1999) Excitotoxicity, synaptic repair, and functional recovery in the mammalian cochlea: a review of recent findings. Ann N Y Acad Sci 884:249–254

    Article  CAS  PubMed  Google Scholar 

  • Robertson D (1983) Functional significance of dendritic swelling after loud sounds in the guinea pig cochlea. Hear Res 9:263–278

    Article  CAS  PubMed  Google Scholar 

  • Robertson D, Johnstone BM, McGill TJ (1980) Effects of loud tones on the inner ear: a combined electrophysiological and ultrastructural study. Hear Res 2:39–43

    Article  CAS  PubMed  Google Scholar 

  • Santarelli R, Del Castillo I, Rodriguez-Ballesteros M, Scimemi P, Cama E, Arslan E, Starr A (2009) Abnormal cochlear potentials from deaf patients with mutations in the otoferlin gene. J Assoc Res Otolaryngol 10:545–556

    Article  PubMed Central  PubMed  Google Scholar 

  • Schuknecht HF (1993) Pathology of the ear, 2nd edn. Lea & Febiger, Baltimore

    Google Scholar 

  • Schuknecht HF, Woellner RC (1955) An experimental and clinical study of deafness from lesions of the cochlear nerve. J Laryngol Otol 69:75–97

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Hirose K, Liberman MC (2002) Dynamics of noise-induced cellular injury and repair in the mouse cochlea. J Assoc Res Otolaryngol 3:248–268

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The research was supported by Grants R01–DC-0188 and P30-DC-05209 from the National Institute on Deafness and Other Communicative Disorders, National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Charles Liberman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this paper

Cite this paper

Liberman, M.C. (2016). Noise-Induced Hearing Loss: Permanent Versus Temporary Threshold Shifts and the Effects of Hair Cell Versus Neuronal Degeneration. In: Popper, A., Hawkins, A. (eds) The Effects of Noise on Aquatic Life II. Advances in Experimental Medicine and Biology, vol 875. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2981-8_1

Download citation

Publish with us

Policies and ethics