Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Recommended Reading
Eades P, McKay B (1984) An algorithm for generating subsets of fixed size with a strong minimal change property. Inf Process Lett 19:131–133
Ehrlich G (1973) Loopless algorithms for generating permutations, combinations, and other combinatorial configurations. J ACM 20:500–513
Johnson S (1963) Generation of permutations by adjacent transposition. Math Comput 17:282–285
Joichi JT, White DE, Williamson SG (1980) Combinatorial Gray codes. SIAM J Comput 9(1):130–141
Knuth DE (2011) The art of computer programming. Combinatorial algorithms, vol 4A, Part 1. Addison-Wesley, Upper Saddle River, xvi+883pp. ISBN 0-201-03804-8
Mütze T (2014) Proof of the middle levels conjecture. arXiv:1404.4442
Pruesse G, Ruskey F (1993) Gray codes from antimatroids. Order 10:239–252
Ruskey F, Sawada J, Williams A (2012) Binary bubble languages. J Comb Theory Ser A 119(1):155–169
Savage C (1989) Gray code sequences of partitions. J Algorithms 10:577–595
Savage C (1997) A survey of combinatorial Gray codes. SIAM Rev 39:605–629
Sawada J, Williams A (2012) Efficient oracles for generating binary bubble languages. Electron J Comb 19:Paper 42
Sekanina M (1960) Spisy Přírodovědecké. Fakulty University v Brně 412:137–140
Trotter H (1962) Algorithm 115: Perm. Commun ACM 5:434–435
Wilf HS (1989) Combinatorial algorithms: an update. In: CBMS-NSF regional conference series in applied mathematics. SIAM. http://epubs.siam.org/doi/book/10.1137/1.9781611970166
Williams A (2013) The greedy Gray code algorithm. In: Algorithms and data structures symposium (WADS 2013), London, Canada. LNCS, vol 8037, pp 525–536
Williams A (2014) Hamiltonicity of the Cayley digraph on the symmetric group generated by \(\sigma = (1\ 2\ \cdots \ n)\) and τ = (1 2). arXiv:1307.2549
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer Science+Business Media New York
About this entry
Cite this entry
Ruskey, F. (2016). Combinatorial Gray Code. In: Kao, MY. (eds) Encyclopedia of Algorithms. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2864-4_732
Download citation
DOI: https://doi.org/10.1007/978-1-4939-2864-4_732
Published:
Publisher Name: Springer, New York, NY
Print ISBN: 978-1-4939-2863-7
Online ISBN: 978-1-4939-2864-4
eBook Packages: Computer ScienceReference Module Computer Science and Engineering