[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Context and Case-Based Reasoning

  • Chapter
  • First Online:
Context in Computing
  • 973 Accesses

Abstract

Case-based reasoning (CBR) is fundamentally context-based. CBR’s basic principles reflect that reasoning must be done in context, and context is reflected throughout the CBR process. This chapter begins by highlighting how the importance of context is reflected in three key CBR tenets. It then samples two sides of CBR and context. First, it considers the role of context within the CBR process itself, sketching how context drives CBR processing, for internal CBR tasks such as case retrieval, similarity assessment, case delineation and elaboration. Second, it considers applications of CBR for context-aware systems. It then proposes directions for enriching the treatment of context within the CBR process. It closes with a case study of research on one of those directions, increasing the context-sensitivity of case adaptation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 103.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 129.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 129.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aha, D., Breslow, L., Munoz-Avila, H.: Conversational case-based reasoning. Appl. Intell. 14, 9–32 (2001)

    Article  MATH  Google Scholar 

  • Bache, K., Lichman, M.: Machine Learning Repository. University of California, School of Information and Computer Sciences, Irvine. http://archive.ics.uci.edu/ml (2013)

  • Bower, G., Black, J., Turner, T.: Scripts in memory for text. Cognit. Psychol. 11, 177–220 (1979)

    Article  Google Scholar 

  • Brézillon, P.: Context in problem solving: a survey. Knowl. Eng. Rev. 14(1), 1–34 (1999)

    Article  Google Scholar 

  • Coyle, L., Balfe, E., Stevenson, G., Neely, S., Dobson, S., Nixon, P., Smyth, B.: Supplementing case-based recommenders with context data. In: Proceedings of the 1st International Workshop on Case-Based Reasoning and Context Awareness at ECCBR 2006 (2006).

    Google Scholar 

  • Dey, A.K.: Understanding and using context. Pers. Ubiquit. Comput. 5(1), 4–7 (2001)

    Article  Google Scholar 

  • Floyd, M., Fuchs, B., Leake, D., Ontanon, S., Rubin, J. (eds.): Proceedings of the ICCBR-2012 Workshop TRUE: Traces for Reusing Users` Experience (2012)

    Google Scholar 

  • Hafner, C., Berman, D.: The role of context in case-based legal reasoning: teleological, temporal, and procedural. Artif. Intell. Law 10(1–3), 19–64 (2002)

    Article  Google Scholar 

  • Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data mining software: an update. SIGKDD Explor. Newsl. 11(1), 10–18 (2009)

    Article  Google Scholar 

  • Hammond, K.: Case-Based Planning: Viewing Planning as a Memory Task. Academic, San Diego (1989)

    Google Scholar 

  • Hanney, K.: Learning adaptation rules from cases. Master’s thesis, Trinity College, Dublin (1997)

    Google Scholar 

  • Hanney, K., Keane, M.: The adaptation knowledge bottleneck: how to ease it by learning from cases. In: Proceedings of the Second International Conference on Case-Based Reasoning. Springer, Berlin (1997)

    Google Scholar 

  • Jalali, V., Leake, D.: A context-aware approach to selecting adaptations for case-based reasoning. In: Brézillon, P., Blackburn, P., Dapoigny, R. (eds.) Modeling and Using Context, pp. 101–114. Springer, Berlin (2013a)

    Chapter  Google Scholar 

  • Jalali, V., Leake, D.: Extending case adaptation with automatically-generated ensembles of adaptation rules. In: Delany, S.J., Onta˜nón, S. (eds.) Case-Based Reasoning Research and Development, ICCBR 2013, pp. 188–202. Springer, Berlin (2013b)

    Google Scholar 

  • Jalali, V., Leake, D.: On deriving adaptation rule confidence from the rule generation process. In: Delany, S.J., Onta˜nón, S. (eds.) Case-Based Reasoning Research and Development, ICCBR 2013, pp. 179–187. Springer, Berlin (2013c)

    Google Scholar 

  • Jalali, V., Leake, D.: An ensemble approach to adaptation-guided retrieval. In: Proceedings of the 2014 Florida AI Research Symposium, AAAI Press, pp. 295–300 (2014)

    Google Scholar 

  • Jurisica, I., Glasgow, J.: Improving performance of case-based classification using context-based relevance. Int. J. Artif. Intell. Tools 6, 511–536 (1997)

    Article  Google Scholar 

  • Kendall-Morwick, J., Leake, D.: A toolkit for representation and retrieval of structured cases. In: Proceedings of the ICCBR-11 Workshop on Process-Oriented Case-Based Reasoning (2011)

    Google Scholar 

  • Kofod-Petersen, A., Aamodt, A.: Contextualised ambient intelligence through case-based reasoning. In: Proceedings of the 8th European Conference on Advances in Case-Based Reasoning, ECCBR'06, pp. 211–225. Springer, Berlin (2006)

    Google Scholar 

  • Leake, D.: An indexing vocabulary for case-based explanation. In: Proceedings of the Ninth National Conference on Artificial Intelligence, Menlo Park, CA, pp. 10–15. AAAI Press, July 1991

    Google Scholar 

  • Leake, D.: Evaluating Explanations: A Content Theory. Lawrence Erlbaum, Hillsdale (1992a)

    Google Scholar 

  • Leake, D.: Constructive similarity assessment: using stored cases to define new situations. In: Proceedings of the Fourteenth Annual Conference of the Cognitive Science Society, pp. 313–318. Lawrence Erlbaum, Hillsdale (1992b)

    Google Scholar 

  • Leake, D.: CBR in context: the present and future. In: Leake, D. (ed.) Case-Based Reasoning: Experiences, Lessons, and Future Directions, pp. 3–30. AAAI Press, Menlo Park. http://www.cs.indiana.edu/˜leake/papers/a-96-01.html (1996)

  • Leake, D.: Assembling latent cases from the web: A challenge problem for cognitive CBR. In: Proceedings of the ICCBR-11 Workshop on Human-Centered and Cognitive Approaches to CBR, Greenwich, UK (2011)

    Google Scholar 

  • Leake, D., Powell, J.: Mining large-scale knowledge sources for case adaptation knowledge. In: Weber, R., Richter, M. (eds.) Proceedings of the Seventh International Conference on Case-Based Reasoning, pp. 209–223. Springer, Berlin (2007)

    Google Scholar 

  • Leake, D., Kinley, A., Wilson, D.: Learning to integrate multiple knowledge sources for case-based reasoning. In: Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence, pp. 246–251. Morgan Kaufmann, San Mateo (1997)

    Google Scholar 

  • López de Mántaras, R., McSherry, D., Bridge, D., Leake, D., Smyth, B., Craw, S., Faltings, B., Maher, M., Cox, M., Forbus, K., Keane, M., Aamodt, A., Watson, I.: Retrieval, reuse, revision, and retention in CBR. Knowl. Eng. Rev. 20(3), 215–240 (2005)

    Article  Google Scholar 

  • Marir, F., Watson, I.: Representing and indexing building refurbishment cases for multiple retrieval of adaptable pieces of cases. In: Proceedings of First International Conference on Case-Based Reasoning, Sesimbra, Portugal, pp. 55–66, October 1995

    Google Scholar 

  • McDonnell, N., Cunningham, P.: A knowledge-light approach to regression using case-based reasoning. In: Proceedings of the 8th European Conference on Case-Based Reasoning, ECCBR'06, pp. 91–105. Springer, Berlin (2006)

    Google Scholar 

  • Mikalsen, M., Kofod-Petersen, A.: Representing and reasoning about context in a mobile environment. Rev. Intell. Artif. (RIA) 19, pp. 479–498 (2005)

    Google Scholar 

  • Mille, A.: From case-based reasoning to traces based reasoning. Technical Report 2281, LIRIS, University of Lyon (2006)

    Google Scholar 

  • Minor, M., Bergmann, R., Gorg, S.: Case-based adaptation of workflows. Inf. Syst. 40, 142–152 (2014)

    Article  Google Scholar 

  • Montani, S.: How to use contextual knowledge in medical case-based reasoning systems: a survey on very recent trends. Artif. Intell. Med. 51(2), 125–131 (2011)

    Article  Google Scholar 

  • Öztürk, P., Aamodt, A.: A context model for knowledge-intensive case-based reasoning. Int. J. Hum.-Comput. Stud. 48(3), 331–355 (1998)

    Article  Google Scholar 

  • Pu, P., Maher, M.L.: Issues and Applications of Case-based Reasoning to Design. Lawrence Erlbaum, Mahwah (1997)

    Google Scholar 

  • Richter, M.: The knowledge contained in similarity measures. Invited talk, the First International Conference on Case-Based Reasoning, Sesimbra, Portugal, October 1995

    Google Scholar 

  • Schank, R.: Dynamic Memory: A Theory of Learning in Computers and People. Cambridge University Press, Cambridge (1982)

    Google Scholar 

  • Schank, R., Abelson, R.: Scripts, Plans, Goals and Understanding. Lawrence Erlbaum, Hillsdale (1977)

    MATH  Google Scholar 

  • Schank, R., Leake, D.: Creativity and learning in a case-based explainer. Artif. Intell. 40(1–3), 353–385 (1989). [also In: Carbonell, J. (ed.) Machine Learning: Paradigms and Methods. MIT Press, Cambridge (1990)]

    Article  Google Scholar 

  • Torgo, L.: Lu\'ı s Torgo - regression data sets. http://www.dcc.fc.up.pt/ ltorgo/Regression/DataSets.html (2013). Accessed 5 May 2013

  • Traoré, A., Tattegrain, H., Mille, A.: A trace analysis based approach for modeling context components. In: Br ézillon, P., Blackburn, P., Dapoigny, R. (eds.) Modeling and Using Context (Lecture Notes in Computer Science), vol. 8175, pp. 101–114. Springer, Berlin (2013)

    Google Scholar 

  • Tversky, A.: Features of similarity. Psychol. Rev. 84(4), 327–352 (1977)

    Article  Google Scholar 

  • Weber, R., Ashley, K., Br\=uninghaus, S.: Textual case-based reasoning. Knowl. Eng. Rev. 20, 255–260 (2005)

    Google Scholar 

  • Zimmermann, A.: Context-awareness in user modelling: Requirements analysis for a case-based reasoning application. In: Proceedings of the 5th International Conference on Case-based Reasoning: Research and Development, ICCBR'03, pp. 718–732. Springer, Berlin (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Leake .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Leake, D., Jalali, V. (2014). Context and Case-Based Reasoning. In: Brézillon, P., Gonzalez, A. (eds) Context in Computing. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1887-4_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1887-4_29

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1886-7

  • Online ISBN: 978-1-4939-1887-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics