Abstract
This chapter describes a selection of models that have been used to build Riemannian spaces of shapes. It starts with a discussion of the finite-dimensional space of point sets (or landmarks) and then provides an introduction to the more challenging issue of building spaces of shapes represented as plane curves. A special attention is devoted to constructions involving quotient spaces, since they are involved in the definition of shape spaces via the action of groups of diffeomorphisms and in the process of identifying shapes that can be related by a Euclidean transformation. The resulting structure is first described via the geometric concept of a Riemannian submersion and then reinterpreted in a Hamiltonian and optimal control framework, via momentum maps. These developments are followed by the description of algorithms and illustrated by numerical experiments.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Allassonniere, S., Trouve, A., Younes, L.: Geodesic shooting and diffeomorphic matching via textured meshes. In: Proceedings of Energy Minimization Methods in Computer Vision and Pattern Recognition (EMMCVPR), St. Augustine. Volume 3757 of Lecture Notes in Computer Sciences. Springer, Berlin/Heidelberg (2005)
Amit, Y., Piccioni, P.: A non-homogeneous Markov process for the estimation of Gaussian random fields with non-linear observations. Ann. Probab. 19, 1664–1678 (1991)
Arad, N., Dyn, N., Reisfeld, D., Yeshurun, Y.: Image warping by radial basis functions: application to facial expressions. CVGIP: Graph. Models Image Process. 56(2), 161–172 (1994)
Arad, N., Reisfeld, D.: Image warping using few anchor points and radial functions. Comput. Graph. Forum 14, 35–46 (1995)
Arnold, V.I.: Sur un principe variationnel pour les ecoulements stationnaires des liquides parfaits et ses applications aux problemes de stanbilite non lineaires. J Mec. 5, 29–43 (1966)
Arnold, V.I.: Mathematical Methods of Classical Mechanics. Springer, New York (1978). Second edition (1989)
Aronszajn, N.: Theory of reproducing kernels. Trans. Am. Math. Soc. 68, 337–404 (1950)
Beg, M.F., Miller, M.I., Trouve, A., Younes, L.: Computing large deformation metric mappings via geodesic flows of diffeomorphisms. Int. J. Comput. Vis. 61(2), 139–157 (2005)
Bookstein, F.L.: Principal warps: thin plate splines and the decomposition of deformations. IEEE Trans. Pattern Anal. Mach. Intell. 11(6), 567–585 (1989)
Bookstein, F.L.: Morphometric Tools for Landmark Data: Geometry and Biology. Cambridge University Press, Cambridge (1991)
Camion, V., Younes, L.: Geodesic interpolating splines. In: Figueiredo, M., Zerubia, J., Jain, K. (eds.) Proceedings of Energy Minimization Methods in Computer Vision and Pattern Recognition (EMMCVPR), Sophia Antipolis. Volume 2134 of Lecture Notes in Computer Sciences, pp. 513–527. Springer, Berlin (2001)
Christensen, G.E., Rabbitt, R.D., Miller, M.I.: Deformable templates using large deformation kinematics. IEEE Trans. Image Process. 5(10), 1435–1447 (1996)
Davis, B.C., Fletcher, P.T., Bullitt, E., Joshi, S.: Population shape regression from random design data. In: IEEE 11th International Conference on Computer Vision (ICCV), Rio de Janeiro, pp. 1–7 (2007)
Do Carmo, M.P.: Riemannian Geometry. Birkäuser, Boston (1992)
Dryden, I.L., Mardia, K.V.: Statistical Shape Analysis. Wiley, New York (1998)
Duchon, J.: Interpolation des fonctions de deux variables suivant le principe de la exion des plaques minces. R.A.I.R.O. Anal. Numer. 10, 5–12 (1977)
Dupuis, P., Grenander, U., Miller, M.: Variational problems on flows of diffeomorphisms for image matching. Q. Appl. Math. 56, 587–600 (1998)
Dyn, N.: Interpolation and approximation by radial and related functions. In: Chui, C.K., Shumaker, L.L., Ward, J.D. (eds.) Approximation Theory VI, vol. 1, pp. 211–234. Academic, San Diego (1989)
Federer, H.: Geometric Measure Theory. Springer, New York (1969)
Fletcher, P.T., Lu, C., Pizer, M., Joshi, S.: Principal geodesic analysis for the study of nonlinear statistics of shape. IEEE Trans. Med. Imaging 23(8), 995–1005 (2004)
Fletcher, P.T., Venkatasubramanian, S., Joshi, S.: Robust statistics on Riemannian manifolds via the geometric median. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Anchorage, pp. 1–8 (2008)
Glaunes, J.: Transport par difféomorphismes de points, de mesures et de courants pour la comparaison de formes et l’anatomie numérique. Ph.D. thesis, University of Paris 13, Paris (in French) (2005)
Glaunes, J., Qiu, A., Miller, M.I., Younes, L.: Large deformation diffeomorphic curve matching. Int. J. Comput. Vis. 80(3), 317–336 (2008)
Glaunes, J., Trouve, A., Younes, L.: Diffeomorphic matching of distributions: a new approach for unlabelled point-sets and sub-manifolds matching. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Washington, DC (2004)
Glaunes, J., Trouve, A., Younes, L.: Modeling planar shape variation via Hamiltonian flows of curves. In: Krim, H., Yezzi, A. (eds.) Statistics and Analysis of Shapes, pp. 335–361. Springer Birkhauser (2006)
Glaunes, J., Vaillant, M., Miller, M.I.: Landmark matching via large deformation diffeomorphisms on the sphere. J. Math. Imaging Vis. 20, 179–200 (2004)
Grenander, U.: General Pattern Theory. Oxford Science Publications, Oxford (1993)
Grenander, U., Chow, Y., Keenan, D.M.: Hands: A Pattern Theoretic Study of Biological Shapes. Springer, New York (1991)
Grenander, U., Keenan, D.M.: On the shape of plane images. SIAM J. Appl. Math. 53(4), 1072–1094 (1991)
Grenander, U., Miller, M.I.: Computational anatomy: an emerging discipline. Q. Appl. Math. LVI(4), 617–694 (1998)
Hamilton, R.S.: The inverse function theorem of Nash and Moser. Bull. Am. Math. Soc. (N.S.) 7(1), 65–222 (1982)
Helgason, S.: Differential Geometry, Lie Groups and Symmetric Spaces. Academic, New York (1978)
Holm, D.D.: Geometric Mechanics. Imperial College Press, London (2008)
Holm, D.D., Marsden, J.E., Ratiu, T.S.: The Euler–Poincaré equations and semidirect products with applications to continuum theories. Adv. Math. 137, 1–81 (1998)
Holm, D.R., Trouvé, A., Younes, L.: The Euler–Poincaré theory of metamorphosis. Q. Appl. Math. 67, 661–685 (2009)
Joshi, S., Miller, M.: Landmark matching via large deformation diffeomorphisms. IEEE Trans. Image Process. 9(8), 1357–1370 (2000)
Joshi, S.H., Klassen, E., Srivastava, A., Jermyn, I.: A novel representation for Riemannian analysis of elastic curves in Rn. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Minneapolis (2007)
Jost, J.: Riemannian Geometry and Geometric Analysis, 2nd edn. Springer, Berlin (1998)
Karcher, H.: Riemannian center of mass and mollifier smoothing. Commun. Pure Appl. Math. 30(5), 509–541 (1977)
Kendall, D.G.: Shape manifolds, Procrustean metrics and complex projective spaces. Bull. Lond. Math. Soc. 16, 81–121 (1984)
Kendall, D.G., Barden, D., Carne, T.K., Le, H.: Shape and Shape Theory. Wiley, New York (1999)
Klassen, E., Srivastava, A., Mio, W., Joshi, S.: Analysis of planar shapes using geodesic paths on shape spaces. IEEE Trans. Pattern Anal. Mach. Intell. 24, 375–405 (2002)
Klassen, E., Srivastava, A., Mio, W., Joshi, S.H.: Analysis of planar shapes using geodesic paths on shape spaces. IEEE Trans. Pattern Anal. Mach. Intell. 26(3), 372–383 (2004)
Kriegl, A., Michor, P.W.: The Convenient Setting of Global Analysis. Mathematical Surveys and Monographs, vol. 53. AMS, Providence (1997)
Kriegl, A., Michor, P.W.: Regular infinite dimensional lie groups. J. Lie Theory 7(1), 61–99 (1997)
Le, H.: Mean size-and-shapes and mean shapes: a geometric point of view. Adv. Appl. Probl. 27, 44–55 (1995)
Le, H.: Estimation of Riemannian barycentres. Lond. Math. Soc. J. Comput. Math. 7, 193–200 (2004)
Marques, J.A., Abrantes, A.J.: Shape alignment-optimal initial point and pose estimation. Pattern Recognit. Lett. 18, 49–53 (1997)
Marsden, J.E.: Lectures on Geometric Mechanics. Cambridge University Press, New York (1992)
Marsden, J.E., Ratiu, T.S.: Introduction to Mechanics and Symmetry. Springer, Berlin (1999)
Meinguet, J.: Multivariate interpolation at arbitrary points made simple. J. Appl. Math. Phys. 30, 292–304 (1979)
Mennucci, A., Yezzi, A.: Metrics in the space of curves. Technical report, arXiv:mathDG/0412454 v2 (2005)
Micheli, M.: The differential geometry of landmark shape manifolds: metrics, geodesics, and curvature. Ph.D. thesis, Brown University, Providence (2008)
Michor, P.W., Mumford, D.: Vanishing geodesic distance on spaces of submanifolds and diffeomorphisms. Doc. Math. 10, 217–245 (2005)
Michor, P.W., Mumford, D.: Riemannian geometries on spaces of plane curves. J. Eur. Math. Soc. 8, 1–48 (2006)
Michor, P.W., Mumford, D.: An overview of the Riemannian metrics on spaces of curves using the Hamiltonian approach. Appl. Comput. Harmonic Anal. 23(1), 74–113 (2007)
Miller, M.I., Trouvé, A., Younes, L.: Geodesic shooting for computational anatomy. J. Math. Image Vis. 24(2), 209–228 (2006)
Miller, M.I., Younes, L.: Group action, diffeomorphism and matching: a general framework. Int. J. Comput. Vis. 41, 61–84 (2001). (Originally published in electronic form in: Proceeding of SCTV 99, http://www.cis.ohiostate.edu/szhu/SCTV99.html)
O’Neill, B.: The fundamental equations of a submersion. Mich. Math. J. 13, 459–469 (1966)
Qiu, A., Younes, L., Miller, M.I.: Intrinsic and extrinsic analysis in computational anatomy. NeuroImage 39(4), 1804–1814 (2008)
Qiu, A., Younes, L., Wang, L., Ratnanather, J.T., Gillepsie, S.K., Kaplan, K., Csernansky, J., Miller, M.I.: Combining anatomical manifold information via diffeomorphic metric mappings for studying cortical thinning of the cingulate gyrus in schizophrenia. NeuroImage 37(3), 821–833 (2007)
Shah, J.: H 0 type Riemannian metrics on the space of planar curves. Q. Appl. Math. 66, 123–137 (2008)
Sharon, E., Mumford, D.: 2D-shape analysis using conformal mapping. Int. J. Comput. Vis. 70(1), 55–75 (2006)
Small, C.: The statistical Theory of Shape. Springer, New York (1996)
Thompson, D.W.: On Growth and Form. Dover, Mineola (1917). Revised edition (1992)
Trouvé, A.: Action de groupe de dimension infinie et reconnaissance de formes. C. R. Acad. Sci. Paris Ser. I Math. 321(8), 1031–1034 (1995)
Trouvé, A.: Diffeomorphism groups and pattern matching in image analysis. Int. J. Comput. Vis. 28(3), 213–221 (1998)
Trouvé, A., Younes, L.: Diffeomorphic matching in 1D: designing and minimizing matching functionals. In: Vernon, D. (ed.) Proceedings of European Conference on Computer Vision (ECCV), Dublin (2000)
Trouvé, A., Younes, L.: On a class of optimal matching problems in 1 dimension. SIAM J. Control Opt. 39(4), 1112–1135 (2001)
Trouvé, A., Younes, L.: Local geometry of deformable templates. SIAM J. Math. Anal. 37(1), 17–59 (2005)
Trouvé, A., Younes, L.: Metamorphoses through lie group action. Found. Comput. Math. 5, 173–198 (2005)
Twinings, C., Marsland, S., Taylor, C.: Measuring geodesic distances on the space of bounded diffeomorphisms. In: British Machine Vision Conference, Cardiff (2002)
Vaillant, M., Glaunés, J.: Surface matching via currents. In: Christensen, G.E., Milan S. (eds.) Proceedings of Information Processing in Medical Imaging (IPMI), Glenwood Springs. Volume 3565 in Lecture Notes in Computer Science. Springer (2005)
Vaillant, M., Miller, M.I., Trouvé, A., Younes, L.: Statistics on diffeomorphisms via tangent space representations. NeuroImage 23(S1), S161–S169 (2004)
Vialard F.-X.: Hamiltonian approach to shape spaces in a diffeomorphic framework: from the discontinuous image matching problem to a stochastic growth model. Ph.D. thesis, Ecole Normale Supérieure de Cachan. http://tel.archives-ouvertes.fr/tel-00400379/fr/ (2009)
Vialard F.-X., Santambrogio, F.: Extension to BV functions of the large deformation diffeomorphisms matching approach. C. R. Math. 347(1–2), 27–32 (2009)
Wahba, G.: Spline Models for Observational Data. SIAM, Philadelphia (2006)
Wang, L., Beg, M.F., Ratnanather, J.T., Ceritoglu, C., Younes, L., Morris, J., Csernansky, J., Miller, M.I.: Large deformation diffeomorphism and momentum based hippocampal shape discrimination in dementia of the Alzheimer type. IEEE Trans. Med. Imaging 26, 462–470 (2006)
Younes, L.: Computable elastic distances between shapes. SIAM J. Appl. Math. 58(2), 565–586 (1998)
Younes, L.: Optimal matching between shapes via elastic deformations. Image Vis. Comput. 17, 381–389 (1999)
Younes, L., Michor, P., Shah, J., Mumford, D.: A metric on shape spaces with explicit geodesics. Rend. Lincei Math. Appl. 9, 25–57 (2008)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer Science+Business Media New York
About this entry
Cite this entry
Trouvé, A., Younes, L. (2015). Shape Spaces. In: Scherzer, O. (eds) Handbook of Mathematical Methods in Imaging. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0790-8_55
Download citation
DOI: https://doi.org/10.1007/978-1-4939-0790-8_55
Publisher Name: Springer, New York, NY
Print ISBN: 978-1-4939-0789-2
Online ISBN: 978-1-4939-0790-8
eBook Packages: Mathematics and StatisticsReference Module Computer Science and Engineering