[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Abstract

This chapter describes a selection of models that have been used to build Riemannian spaces of shapes. It starts with a discussion of the finite-dimensional space of point sets (or landmarks) and then provides an introduction to the more challenging issue of building spaces of shapes represented as plane curves. A special attention is devoted to constructions involving quotient spaces, since they are involved in the definition of shape spaces via the action of groups of diffeomorphisms and in the process of identifying shapes that can be related by a Euclidean transformation. The resulting structure is first described via the geometric concept of a Riemannian submersion and then reinterpreted in a Hamiltonian and optimal control framework, via momentum maps. These developments are followed by the description of algorithms and illustrated by numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 752.72
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
GBP 752.72
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Allassonniere, S., Trouve, A., Younes, L.: Geodesic shooting and diffeomorphic matching via textured meshes. In: Proceedings of Energy Minimization Methods in Computer Vision and Pattern Recognition (EMMCVPR), St. Augustine. Volume 3757 of Lecture Notes in Computer Sciences. Springer, Berlin/Heidelberg (2005)

    Google Scholar 

  2. Amit, Y., Piccioni, P.: A non-homogeneous Markov process for the estimation of Gaussian random fields with non-linear observations. Ann. Probab. 19, 1664–1678 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  3. Arad, N., Dyn, N., Reisfeld, D., Yeshurun, Y.: Image warping by radial basis functions: application to facial expressions. CVGIP: Graph. Models Image Process. 56(2), 161–172 (1994)

    Google Scholar 

  4. Arad, N., Reisfeld, D.: Image warping using few anchor points and radial functions. Comput. Graph. Forum 14, 35–46 (1995)

    Article  Google Scholar 

  5. Arnold, V.I.: Sur un principe variationnel pour les ecoulements stationnaires des liquides parfaits et ses applications aux problemes de stanbilite non lineaires. J Mec. 5, 29–43 (1966)

    Google Scholar 

  6. Arnold, V.I.: Mathematical Methods of Classical Mechanics. Springer, New York (1978). Second edition (1989)

    Google Scholar 

  7. Aronszajn, N.: Theory of reproducing kernels. Trans. Am. Math. Soc. 68, 337–404 (1950)

    Article  MATH  MathSciNet  Google Scholar 

  8. Beg, M.F., Miller, M.I., Trouve, A., Younes, L.: Computing large deformation metric mappings via geodesic flows of diffeomorphisms. Int. J. Comput. Vis. 61(2), 139–157 (2005)

    Article  Google Scholar 

  9. Bookstein, F.L.: Principal warps: thin plate splines and the decomposition of deformations. IEEE Trans. Pattern Anal. Mach. Intell. 11(6), 567–585 (1989)

    Article  MATH  Google Scholar 

  10. Bookstein, F.L.: Morphometric Tools for Landmark Data: Geometry and Biology. Cambridge University Press, Cambridge (1991)

    MATH  Google Scholar 

  11. Camion, V., Younes, L.: Geodesic interpolating splines. In: Figueiredo, M., Zerubia, J., Jain, K. (eds.) Proceedings of Energy Minimization Methods in Computer Vision and Pattern Recognition (EMMCVPR), Sophia Antipolis. Volume 2134 of Lecture Notes in Computer Sciences, pp. 513–527. Springer, Berlin (2001)

    Google Scholar 

  12. Christensen, G.E., Rabbitt, R.D., Miller, M.I.: Deformable templates using large deformation kinematics. IEEE Trans. Image Process. 5(10), 1435–1447 (1996)

    Article  Google Scholar 

  13. Davis, B.C., Fletcher, P.T., Bullitt, E., Joshi, S.: Population shape regression from random design data. In: IEEE 11th International Conference on Computer Vision (ICCV), Rio de Janeiro, pp. 1–7 (2007)

    Google Scholar 

  14. Do Carmo, M.P.: Riemannian Geometry. Birkäuser, Boston (1992)

    MATH  Google Scholar 

  15. Dryden, I.L., Mardia, K.V.: Statistical Shape Analysis. Wiley, New York (1998)

    MATH  Google Scholar 

  16. Duchon, J.: Interpolation des fonctions de deux variables suivant le principe de la exion des plaques minces. R.A.I.R.O. Anal. Numer. 10, 5–12 (1977)

    Google Scholar 

  17. Dupuis, P., Grenander, U., Miller, M.: Variational problems on flows of diffeomorphisms for image matching. Q. Appl. Math. 56, 587–600 (1998)

    MATH  MathSciNet  Google Scholar 

  18. Dyn, N.: Interpolation and approximation by radial and related functions. In: Chui, C.K., Shumaker, L.L., Ward, J.D. (eds.) Approximation Theory VI, vol. 1, pp. 211–234. Academic, San Diego (1989)

    Google Scholar 

  19. Federer, H.: Geometric Measure Theory. Springer, New York (1969)

    MATH  Google Scholar 

  20. Fletcher, P.T., Lu, C., Pizer, M., Joshi, S.: Principal geodesic analysis for the study of nonlinear statistics of shape. IEEE Trans. Med. Imaging 23(8), 995–1005 (2004)

    Article  Google Scholar 

  21. Fletcher, P.T., Venkatasubramanian, S., Joshi, S.: Robust statistics on Riemannian manifolds via the geometric median. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Anchorage, pp. 1–8 (2008)

    Google Scholar 

  22. Glaunes, J.: Transport par difféomorphismes de points, de mesures et de courants pour la comparaison de formes et l’anatomie numérique. Ph.D. thesis, University of Paris 13, Paris (in French) (2005)

    Google Scholar 

  23. Glaunes, J., Qiu, A., Miller, M.I., Younes, L.: Large deformation diffeomorphic curve matching. Int. J. Comput. Vis. 80(3), 317–336 (2008)

    Article  Google Scholar 

  24. Glaunes, J., Trouve, A., Younes, L.: Diffeomorphic matching of distributions: a new approach for unlabelled point-sets and sub-manifolds matching. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Washington, DC (2004)

    Google Scholar 

  25. Glaunes, J., Trouve, A., Younes, L.: Modeling planar shape variation via Hamiltonian flows of curves. In: Krim, H., Yezzi, A. (eds.) Statistics and Analysis of Shapes, pp. 335–361. Springer Birkhauser (2006)

    Google Scholar 

  26. Glaunes, J., Vaillant, M., Miller, M.I.: Landmark matching via large deformation diffeomorphisms on the sphere. J. Math. Imaging Vis. 20, 179–200 (2004)

    Article  MathSciNet  Google Scholar 

  27. Grenander, U.: General Pattern Theory. Oxford Science Publications, Oxford (1993)

    Google Scholar 

  28. Grenander, U., Chow, Y., Keenan, D.M.: Hands: A Pattern Theoretic Study of Biological Shapes. Springer, New York (1991)

    Book  Google Scholar 

  29. Grenander, U., Keenan, D.M.: On the shape of plane images. SIAM J. Appl. Math. 53(4), 1072–1094 (1991)

    Article  MathSciNet  Google Scholar 

  30. Grenander, U., Miller, M.I.: Computational anatomy: an emerging discipline. Q. Appl. Math. LVI(4), 617–694 (1998)

    Google Scholar 

  31. Hamilton, R.S.: The inverse function theorem of Nash and Moser. Bull. Am. Math. Soc. (N.S.) 7(1), 65–222 (1982)

    Google Scholar 

  32. Helgason, S.: Differential Geometry, Lie Groups and Symmetric Spaces. Academic, New York (1978)

    MATH  Google Scholar 

  33. Holm, D.D.: Geometric Mechanics. Imperial College Press, London (2008)

    Book  Google Scholar 

  34. Holm, D.D., Marsden, J.E., Ratiu, T.S.: The Euler–Poincaré equations and semidirect products with applications to continuum theories. Adv. Math. 137, 1–81 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  35. Holm, D.R., Trouvé, A., Younes, L.: The Euler–Poincaré theory of metamorphosis. Q. Appl. Math. 67, 661–685 (2009)

    Article  MATH  Google Scholar 

  36. Joshi, S., Miller, M.: Landmark matching via large deformation diffeomorphisms. IEEE Trans. Image Process. 9(8), 1357–1370 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  37. Joshi, S.H., Klassen, E., Srivastava, A., Jermyn, I.: A novel representation for Riemannian analysis of elastic curves in Rn. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Minneapolis (2007)

    Google Scholar 

  38. Jost, J.: Riemannian Geometry and Geometric Analysis, 2nd edn. Springer, Berlin (1998)

    Book  MATH  Google Scholar 

  39. Karcher, H.: Riemannian center of mass and mollifier smoothing. Commun. Pure Appl. Math. 30(5), 509–541 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  40. Kendall, D.G.: Shape manifolds, Procrustean metrics and complex projective spaces. Bull. Lond. Math. Soc. 16, 81–121 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  41. Kendall, D.G., Barden, D., Carne, T.K., Le, H.: Shape and Shape Theory. Wiley, New York (1999)

    Book  MATH  Google Scholar 

  42. Klassen, E., Srivastava, A., Mio, W., Joshi, S.: Analysis of planar shapes using geodesic paths on shape spaces. IEEE Trans. Pattern Anal. Mach. Intell. 24, 375–405 (2002)

    Google Scholar 

  43. Klassen, E., Srivastava, A., Mio, W., Joshi, S.H.: Analysis of planar shapes using geodesic paths on shape spaces. IEEE Trans. Pattern Anal. Mach. Intell. 26(3), 372–383 (2004)

    Article  Google Scholar 

  44. Kriegl, A., Michor, P.W.: The Convenient Setting of Global Analysis. Mathematical Surveys and Monographs, vol. 53. AMS, Providence (1997)

    Google Scholar 

  45. Kriegl, A., Michor, P.W.: Regular infinite dimensional lie groups. J. Lie Theory 7(1), 61–99 (1997)

    MATH  MathSciNet  Google Scholar 

  46. Le, H.: Mean size-and-shapes and mean shapes: a geometric point of view. Adv. Appl. Probl. 27, 44–55 (1995)

    Article  MATH  Google Scholar 

  47. Le, H.: Estimation of Riemannian barycentres. Lond. Math. Soc. J. Comput. Math. 7, 193–200 (2004)

    MATH  Google Scholar 

  48. Marques, J.A., Abrantes, A.J.: Shape alignment-optimal initial point and pose estimation. Pattern Recognit. Lett. 18, 49–53 (1997)

    Article  Google Scholar 

  49. Marsden, J.E.: Lectures on Geometric Mechanics. Cambridge University Press, New York (1992)

    Google Scholar 

  50. Marsden, J.E., Ratiu, T.S.: Introduction to Mechanics and Symmetry. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  51. Meinguet, J.: Multivariate interpolation at arbitrary points made simple. J. Appl. Math. Phys. 30, 292–304 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  52. Mennucci, A., Yezzi, A.: Metrics in the space of curves. Technical report, arXiv:mathDG/0412454 v2 (2005)

    Google Scholar 

  53. Micheli, M.: The differential geometry of landmark shape manifolds: metrics, geodesics, and curvature. Ph.D. thesis, Brown University, Providence (2008)

    Google Scholar 

  54. Michor, P.W., Mumford, D.: Vanishing geodesic distance on spaces of submanifolds and diffeomorphisms. Doc. Math. 10, 217–245 (2005)

    MATH  MathSciNet  Google Scholar 

  55. Michor, P.W., Mumford, D.: Riemannian geometries on spaces of plane curves. J. Eur. Math. Soc. 8, 1–48 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  56. Michor, P.W., Mumford, D.: An overview of the Riemannian metrics on spaces of curves using the Hamiltonian approach. Appl. Comput. Harmonic Anal. 23(1), 74–113 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  57. Miller, M.I., Trouvé, A., Younes, L.: Geodesic shooting for computational anatomy. J. Math. Image Vis. 24(2), 209–228 (2006)

    Article  Google Scholar 

  58. Miller, M.I., Younes, L.: Group action, diffeomorphism and matching: a general framework. Int. J. Comput. Vis. 41, 61–84 (2001). (Originally published in electronic form in: Proceeding of SCTV 99, http://www.cis.ohiostate.edu/szhu/SCTV99.html)

  59. O’Neill, B.: The fundamental equations of a submersion. Mich. Math. J. 13, 459–469 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  60. Qiu, A., Younes, L., Miller, M.I.: Intrinsic and extrinsic analysis in computational anatomy. NeuroImage 39(4), 1804–1814 (2008)

    Article  Google Scholar 

  61. Qiu, A., Younes, L., Wang, L., Ratnanather, J.T., Gillepsie, S.K., Kaplan, K., Csernansky, J., Miller, M.I.: Combining anatomical manifold information via diffeomorphic metric mappings for studying cortical thinning of the cingulate gyrus in schizophrenia. NeuroImage 37(3), 821–833 (2007)

    Article  Google Scholar 

  62. Shah, J.: H 0 type Riemannian metrics on the space of planar curves. Q. Appl. Math. 66, 123–137 (2008)

    Article  MATH  Google Scholar 

  63. Sharon, E., Mumford, D.: 2D-shape analysis using conformal mapping. Int. J. Comput. Vis. 70(1), 55–75 (2006)

    Article  Google Scholar 

  64. Small, C.: The statistical Theory of Shape. Springer, New York (1996)

    Book  MATH  Google Scholar 

  65. Thompson, D.W.: On Growth and Form. Dover, Mineola (1917). Revised edition (1992)

    Google Scholar 

  66. Trouvé, A.: Action de groupe de dimension infinie et reconnaissance de formes. C. R. Acad. Sci. Paris Ser. I Math. 321(8), 1031–1034 (1995)

    MATH  MathSciNet  Google Scholar 

  67. Trouvé, A.: Diffeomorphism groups and pattern matching in image analysis. Int. J. Comput. Vis. 28(3), 213–221 (1998)

    Article  Google Scholar 

  68. Trouvé, A., Younes, L.: Diffeomorphic matching in 1D: designing and minimizing matching functionals. In: Vernon, D. (ed.) Proceedings of European Conference on Computer Vision (ECCV), Dublin (2000)

    Google Scholar 

  69. Trouvé, A., Younes, L.: On a class of optimal matching problems in 1 dimension. SIAM J. Control Opt. 39(4), 1112–1135 (2001)

    Article  Google Scholar 

  70. Trouvé, A., Younes, L.: Local geometry of deformable templates. SIAM J. Math. Anal. 37(1), 17–59 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  71. Trouvé, A., Younes, L.: Metamorphoses through lie group action. Found. Comput. Math. 5, 173–198 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  72. Twinings, C., Marsland, S., Taylor, C.: Measuring geodesic distances on the space of bounded diffeomorphisms. In: British Machine Vision Conference, Cardiff (2002)

    Book  Google Scholar 

  73. Vaillant, M., Glaunés, J.: Surface matching via currents. In: Christensen, G.E., Milan S. (eds.) Proceedings of Information Processing in Medical Imaging (IPMI), Glenwood Springs. Volume 3565 in Lecture Notes in Computer Science. Springer (2005)

    Google Scholar 

  74. Vaillant, M., Miller, M.I., Trouvé, A., Younes, L.: Statistics on diffeomorphisms via tangent space representations. NeuroImage 23(S1), S161–S169 (2004)

    Article  Google Scholar 

  75. Vialard F.-X.: Hamiltonian approach to shape spaces in a diffeomorphic framework: from the discontinuous image matching problem to a stochastic growth model. Ph.D. thesis, Ecole Normale Supérieure de Cachan. http://tel.archives-ouvertes.fr/tel-00400379/fr/ (2009)

  76. Vialard F.-X., Santambrogio, F.: Extension to BV functions of the large deformation diffeomorphisms matching approach. C. R. Math. 347(1–2), 27–32 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  77. Wahba, G.: Spline Models for Observational Data. SIAM, Philadelphia (2006)

    Google Scholar 

  78. Wang, L., Beg, M.F., Ratnanather, J.T., Ceritoglu, C., Younes, L., Morris, J., Csernansky, J., Miller, M.I.: Large deformation diffeomorphism and momentum based hippocampal shape discrimination in dementia of the Alzheimer type. IEEE Trans. Med. Imaging 26, 462–470 (2006)

    Article  Google Scholar 

  79. Younes, L.: Computable elastic distances between shapes. SIAM J. Appl. Math. 58(2), 565–586 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  80. Younes, L.: Optimal matching between shapes via elastic deformations. Image Vis. Comput. 17, 381–389 (1999)

    Article  Google Scholar 

  81. Younes, L., Michor, P., Shah, J., Mumford, D.: A metric on shape spaces with explicit geodesics. Rend. Lincei Math. Appl. 9, 25–57 (2008)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Trouvé .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this entry

Cite this entry

Trouvé, A., Younes, L. (2015). Shape Spaces. In: Scherzer, O. (eds) Handbook of Mathematical Methods in Imaging. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0790-8_55

Download citation

Publish with us

Policies and ethics