[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

In Vitro Models of the Blood–Brain Barrier

  • Protocol
Cerebral Angiogenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1135))

Abstract

The blood–brain barrier (BBB) proper is composed of endothelial cells (ECs) of the cerebral microvasculature, which are interconnected by tight junctions (TJs) that in turn form a physical barrier restricting paracellular flux. Tight control of vascular permeability is essential for the homeostasis and functionality of the central nervous system (CNS). In vitro BBB models have been in use for decades and have been of great benefit in the process of investigating and understanding the cellular and molecular mechanisms underlying BBB establishment. BBB integrity changes can be addressed in vitro by determining cell monolayer permeability (Pe) to different solutes and measuring trans-endothelial electrical resistance (TEER).

This chapter describes procedures that can be utilized for both freshly isolated mouse brain microvascular ECs (MBMECs) and murine or human brain EC lines (bEnd5 or hCMEC/D3), cultivated either as a single monolayer or in cocultivation with primary mouse astrocytes (ACs). It starts with detailed information on how to perform transwell cell culture, including coating of inserts and seeding of the ECs and ACs. Moreover, it encompasses instructions for electrical assessment of the in vitro BBB using the more recent cellZscope® device, which was traditionally performed with chopstick electrodes of voltohmmeter type (EVOM). From continuous impedance measurements, the cellZscope® device provides TEER (paracellular resistance) and cell membrane capacitance (Ccl—transcellular resistance), two independent measures of monolayer integrity. Additionally, this chapter provides guidance through subsequent experiments such as permeability analysis (Pe, flux), expression analysis (qRT-PCR and Western blotting), and localization analysis of BBB junction proteins (immunocytochemistry) using the same inserts subjected earlier to impedance analysis.

As numerous diseases are associated with BBB breakdown, researchers aim to continuously improve and refine in vitro BBB models to mimic in vivo conditions as closely as possible. This chapter summarizes protocols with the intention to provide a collection of BBB in vitro assays that generate reproducible results not only with primary brain ECs but also with EC lines to open up the field for a broader spectrum of researchers who intend to investigate the BBB in vitro particularly aiming at therapeutic aspects.

Cathrin J. Czupalla and Kavi Devraj contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
GBP 34.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 79.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 99.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 129.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abbott NJ, Patabendige AA, Dolman DE, Yusof SR, Begley DJ (2010) Structure and function of the blood-brain barrier. Neurobiol Dis 37:13–25

    Article  CAS  PubMed  Google Scholar 

  2. Pardridge WM (2003) Molecular biology of the blood-brain barrier. Methods Mol Med 89:385–399

    CAS  PubMed  Google Scholar 

  3. Pardridge WM (2005) The blood-brain barrier: bottleneck in brain drug development. NeuroRx 2:3–14

    Article  PubMed Central  PubMed  Google Scholar 

  4. Neuwelt E, Abbott NJ, Abrey L, Banks WA, Blakley B, Davis T, Engelhardt B, Grammas P, Nedergaard M, Nutt J, Pardridge W, Rosenberg GA, Smith Q, Drewes LR (2008) Strategies to advance translational research into brain barriers. Lancet Neurol 7:84–96

    Article  CAS  PubMed  Google Scholar 

  5. Deli MA, Abraham CS, Kataoka Y, Niwa M (2005) Permeability studies on in vitro blood-brain barrier models: physiology, pathology, and pharmacology. Cell Mol Neurobiol 25:59–127

    Article  PubMed  Google Scholar 

  6. Lippmann ES, Azarin SM, Kay JE, Nessler RA, Wilson HK, Al-Ahmad A, Palecek SP, Shusta EV (2012) Derivation of blood-brain barrier endothelial cells from human pluripotent stem cells. Nat Biotechnol 30:783–791

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Lyck R, Ruderisch N, Moll AG, Steiner O, Cohen CD, Engelhardt B, Makrides V, Verrey F (2009) Culture-induced changes in blood-brain barrier transcriptome: implications for amino-acid transporters in vivo. J Cereb Blood Flow Metab 29:1491–1502

    Article  CAS  PubMed  Google Scholar 

  8. Calabria AR, Shusta EV (2008) A genomic comparison of in vivo and in vitro brain microvascular endothelial cells. J Cereb Blood Flow Metab 28:135–148

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Tilling T, Korte D, Hoheisel D, Galla HJ (1998) Basement membrane proteins influence brain capillary endothelial barrier function in vitro. J Neurochem 71:1151–1157

    Article  CAS  PubMed  Google Scholar 

  10. Benson K, Cramer S, Galla HJ (2013) Impedance-based cell monitoring: barrier properties and beyond. Fluids Barriers CNS 10:5

    Article  PubMed Central  PubMed  Google Scholar 

  11. Gunzel D, Zakrzewski SS, Schmid T, Pangalos M, Wiedenhoeft J, Blasse C, Ozboda C, Krug SM (2012) From TER to trans- and paracellular resistance: lessons from impedance spectroscopy. Ann N Y Acad Sci 1257:142–151

    Article  PubMed  Google Scholar 

  12. Nitta T, Hata M, Gotoh S, Seo Y, Sasaki H, Hashimoto N, Furuse M, Tsukita S (2003) Size-selective loosening of the blood-brain barrier in claudin-5-deficient mice. J Cell Biol 161:653–660

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Van Itallie C, Rahner C, Anderson JM (2001) Regulated expression of claudin-4 decreases paracellular conductance through a selective decrease in sodium permeability. J Clin Invest 107:1319–1327

    Article  PubMed Central  PubMed  Google Scholar 

  14. Van Itallie CM, Anderson JM (2011) Measuring size-dependent permeability of the tight junction using PEG profiling. Methods Mol Biol 762:1–11

    Article  PubMed  Google Scholar 

  15. Liebner S, Corada M, Bangsow T, Babbage J, Taddei A, Czupalla CJ, Reis M, Felici A, Wolburg H, Fruttiger M, Taketo MM, von Melchner H, Plate KH, Gerhardt H, Dejana E (2008) Wnt/beta-catenin signaling controls development of the blood-brain barrier. J Cell Biol 183:409–417

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Rohnelt RK, Hoch G, Reiss Y, Engelhardt B (1997) Immunosurveillance modelled in vitro: naive and memory T cells spontaneously migrate across unstimulated microvascular endothelium. Int Immunol 9:435–450

    Article  CAS  PubMed  Google Scholar 

  17. Weksler BB, Subileau EA, Perriere N, Charneau P, Holloway K, Leveque M, Tricoire-Leignel H, Nicotra A, Bourdoulous S, Turowski P, Male DK, Roux F, Greenwood J, Romero IA, Couraud PO (2005) Blood-brain barrier-specific properties of a human adult brain endothelial cell line. FASEB J 19:1872–1874

    CAS  PubMed  Google Scholar 

  18. Uliasz TF, Hamby ME, Jackman NA, Hewett JA, Hewett SJ (2012) Generation of primary astrocyte cultures devoid of contaminating microglia. Methods Mol Biol 814:61–79

    Article  CAS  PubMed  Google Scholar 

  19. Liebner S, Czupalla CJ, Wolburg H (2011) Current concepts of blood-brain barrier development. Int J Dev Biol 55:467–476

    Article  CAS  PubMed  Google Scholar 

  20. Crone C, Olesen SP (1982) Electrical resistance of brain microvascular endothelium. Brain Res 241:49–55

    Article  CAS  PubMed  Google Scholar 

  21. Li G, Simon MJ, Cancel LM, Shi ZD, Ji X, Tarbell JM, Morrison B 3rd, Fu BM (2010) Permeability of endothelial and astrocyte cocultures: in vitro blood-brain barrier models for drug delivery studies. Ann Biomed Eng 38:2499–2511

    Article  PubMed Central  PubMed  Google Scholar 

  22. Antonetti DA, Wolpert EB (2003) Isolation and characterization of retinal endothelial cells. Methods Mol Med 89:365–374

    PubMed  Google Scholar 

  23. Kroll S, El-Gindi J, Thanabalasundaram G, Panpumthong P, Schrot S, Hartmann C, Galla HJ (2009) Control of the blood-brain barrier by glucocorticoids and the cells of the neurovascular unit. Ann N Y Acad Sci 1165:228–239

    Article  PubMed  Google Scholar 

  24. Zhang Y, Li CS, Ye Y, Johnson K, Poe J, Johnson S, Bobrowski W, Garrido R, Madhu C (2006) Porcine brain microvessel endothelial cells as an in vitro model to predict in vivo blood-brain barrier permeability. Drug Metab Dispos 34:1935–1943

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Czupalla, C.J., Liebner, S., Devraj, K. (2014). In Vitro Models of the Blood–Brain Barrier. In: Milner, R. (eds) Cerebral Angiogenesis. Methods in Molecular Biology, vol 1135. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0320-7_34

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0320-7_34

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0319-1

  • Online ISBN: 978-1-4939-0320-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics