[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Tracking CRISPR’s Footprints

  • Protocol
  • First Online:
CRISPR Gene Editing

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1961))

Abstract

The programmable clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) and CRISPR-Cas9-derived gene editing and manipulation tools have revolutionized biomedical research over the past few years. One important category of assisting technologies in CRISPR gene editing is methods used for detecting and quantifying indels (deletions or insertions). These indels are caused by the repair of CRISPR-Cas9-introduced DNA double-stranded breaks (DBSs), known as CRISPR’s DNA cleavage footprints. In addition, CRISPR-Cas9 can also leave footprints to the DNA without introducing DSBs, known as CRISPR’s DNA-binding footprints. The indel tracking methods have contributed greatly to the improvement of CRISPR-Cas9 activity and specificity. Here, we review and discuss strategies developed over that past few years to track the CRISPR’s footprints, their advantages, and limitations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
GBP 34.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 127.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
GBP 159.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chang HHY et al (2017) Non-homologous DNA end joining and alternative pathways to double-strand break repair. Nat Rev Mol Cell Biol 18(8):495–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. McVey M, Lee SE (2008) MMEJ repair of double-strand breaks (director’s cut): deleted sequences and alternative endings. Trends Genet 24(11):529–538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ceccaldi R et al (2016) Repair pathway choices and consequences at the double-strand break. Trends Cell Biol 26(1):52–64

    Article  CAS  PubMed  Google Scholar 

  4. Lahue RS et al (1989) DNA mismatch correction in a defined system. Science 245(4914):160–164

    Article  CAS  PubMed  Google Scholar 

  5. Lindahl T (1974) An N-glycosidase from Escherichia coli that releases free uracil from DNA containing deaminated cytosine residues. Proc Natl Acad Sci U S A 71(9):3649–3653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sancar A, Rupp WD (1983) A novel repair enzyme: UVRABC excision nuclease of Escherichia coli cuts a DNA strand on both sides of the damaged region. Cell 33(1):249–260

    Article  CAS  PubMed  Google Scholar 

  7. Mehta A, Haber JE (2014) Sources of DNA double-strand breaks and models of recombinational DNA repair. Cold Spring Harb Perspect Biol 6(9):a016428

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Capecchi MR (2005) Gene targeting in mice: functional analysis of the mammalian genome for the twenty-first century. Nat Rev Genet 6(6):507–512

    Article  CAS  PubMed  Google Scholar 

  9. Epinat JC et al (2003) A novel engineered meganuclease induces homologous recombination in yeast and mammalian cells. Nucleic Acids Res 31(11):2952–2962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Arnould S et al (2007) Engineered I-CreI derivatives cleaving sequences from the human XPC gene can induce highly efficient gene correction in mammalian cells. J Mol Biol 371(1):49–65

    Article  CAS  PubMed  Google Scholar 

  11. Boch J et al (2009) Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326(5959):1509–1512

    Article  CAS  PubMed  Google Scholar 

  12. Jinek M et al (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096):816–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cong L et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339(6121):819–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mali P et al (2013) RNA-guided human genome engineering via Cas9. Science 339(6121):823–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Barrangou R, Doudna JA (2016) Applications of CRISPR technologies in research and beyond. Nat Biotechnol 34(9):933–941

    Article  CAS  PubMed  Google Scholar 

  16. Yeung AT et al (2005) Enzymatic mutation detection technologies. BioTechniques 38(5):749–758

    Article  CAS  PubMed  Google Scholar 

  17. Zhu X et al (2014) An efficient genotyping method for genome-modified animals and human cells generated with CRISPR/Cas9 system. Sci Rep 4:6420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Liu C et al (2017) Delivery strategies of the CRISPR-Cas9 gene-editing system for therapeutic applications. J Control Release 266:17–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Li L et al (2018) Non-viral delivery systems for CRISPR/Cas9-based genome editing: challenges and opportunities. Biomaterials 171:207–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Senis E et al (2014) CRISPR/Cas9-mediated genome engineering: an adeno-associated viral (AAV) vector toolbox. Biotechnol J 9(11):1402–1412

    Article  CAS  PubMed  Google Scholar 

  21. Schmidt F, Grimm D (2015) CRISPR genome engineering and viral gene delivery: a case of mutual attraction. Biotechnol J 10(2):258–272

    Article  CAS  PubMed  Google Scholar 

  22. Ehrke-Schulz E et al (2016) Quantification of designer nuclease induced mutation rates: a direct comparison of different methods. Mol Ther Methods Clin Dev 3:16047

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Sentmanat MF et al (2018) A survey of validation strategies for CRISPR-Cas9 editing. Sci Rep 8(1):888

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. van Overbeek M et al (2016) DNA repair profiling reveals nonrandom outcomes at Cas9-mediated breaks. Mol Cell 63(4):633–646

    Article  PubMed  CAS  Google Scholar 

  25. Brinkman EK et al (2014) Easy quantitative assessment of genome editing by sequence trace decomposition. Nucleic Acids Res 42(22):e168

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Brinkman EK et al (2018) Easy quantification of template-directed CRISPR/Cas9 editing. Nucleic Acids Res 46(10):e58

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Lin L et al (2017) Fusion of SpCas9 to E. coli Rec A protein enhances CRISPR-Cas9 mediated gene knockout in mammalian cells. J Biotechnol 247:42–49

    Article  CAS  PubMed  Google Scholar 

  28. Jensen KT et al (2017) Chromatin accessibility and guide sequence secondary structure affect CRISPR-Cas9 gene editing efficiency. FEBS Lett 591(13):1892–1901

    Article  CAS  PubMed  Google Scholar 

  29. Dehairs J et al (2016) CRISP-ID: decoding CRISPR mediated indels by Sanger sequencing. Sci Rep 6:28973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yang Z et al (2015) Fast and sensitive detection of indels induced by precise gene targeting. Nucleic Acids Res 43(9):e59

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Ramlee MK et al (2015) High-throughput genotyping of CRISPR/Cas9-mediated mutants using fluorescent PCR-capillary gel electrophoresis. Sci Rep 5:15587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. D'Agostino Y et al (2016) A rapid and cheap methodology for CRISPR/Cas9 zebrafish mutant screening. Mol Biotechnol 58(1):73–78

    Article  CAS  PubMed  Google Scholar 

  33. Samarut E et al (2016) A simplified method for identifying early CRISPR-induced indels in zebrafish embryos using High Resolution Melting analysis. BMC Genomics 17:547

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Findlay SD et al (2016) A digital PCR-based method for efficient and highly specific screening of genome edited cells. PLoS One 11(4):e0153901

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Pinheiro LB et al (2012) Evaluation of a droplet digital polymerase chain reaction format for DNA copy number quantification. Anal Chem 84(2):1003–1011

    Article  CAS  PubMed  Google Scholar 

  36. Kim H et al (2011) Surrogate reporters for enrichment of cells with nuclease-induced mutations. Nat Methods 8(11):941–943

    Article  CAS  PubMed  Google Scholar 

  37. Wen Y et al (2017) A stable but reversible integrated surrogate reporter for assaying CRISPR/Cas9-stimulated homology-directed repair. J Biol Chem 292(15):6148–6162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhou Y et al (2016) Enhanced genome editing in mammalian cells with a modified dual-fluorescent surrogate system. Cell Mol Life Sci 73(13):2543–2563

    Article  CAS  PubMed  Google Scholar 

  39. Fu L et al (2016) A simple and efficient method to visualize and quantify the efficiency of chromosomal mutations from genome editing. Sci Rep 6:35488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yang Y et al (2016) Highly efficient and rapid detection of the cleavage activity of Cas9/gRNA via a fluorescent reporter. Appl Biochem Biotechnol 180(4):655–667

    Article  CAS  PubMed  Google Scholar 

  41. Ramakrishna S et al (2014) Surrogate reporter-based enrichment of cells containing RNA-guided Cas9 nuclease-induced mutations. Nat Commun 5:3378

    Article  PubMed  CAS  Google Scholar 

  42. Hussmann D et al (2017) IGF1R depletion facilitates MET-amplification as mechanism of acquired resistance to erlotinib in HCC827 NSCLC cells. Oncotarget 8(20):33300–33315

    Article  PubMed  PubMed Central  Google Scholar 

  43. Xue LJ, Tsai CJ (2015) AGEseq: analysis of genome editing by sequencing. Mol Plant 8(9):1428–1430

    Article  CAS  PubMed  Google Scholar 

  44. Pinello L et al (2016) Analyzing CRISPR genome-editing experiments with CRISPResso. Nat Biotechnol 34(7):695–697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Boel A et al (2016) BATCH-GE: batch analysis of next-generation sequencing data for genome editing assessment. Sci Rep 6:30330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Qi LS et al (2013) Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152(5):1173–1183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ran FA et al (2013) Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154(6):1380–1389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hilton IB et al (2015) Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat Biotechnol 33(5):510–517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Vad-Nielsen J et al (2018) Simple method for assembly of CRISPR synergistic activation mediator gRNA expression array. J Biotechnol 274:54–57

    Article  CAS  PubMed  Google Scholar 

  50. Xiong K et al (2017) RNA-guided activation of pluripotency genes in human fibroblasts. Cell Reprogram 19(3):189–198

    Article  CAS  PubMed  Google Scholar 

  51. Gaudelli NM et al (2017) Programmable base editing of A*T to G*C in genomic DNA without DNA cleavage. Nature 551(7681):464–471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kim D et al (2015) Digenome-seq: genome-wide profiling of CRISPR-Cas9 off-target effects in human cells. Nat Methods 12(3):237–243. 1 p following 243

    Article  CAS  PubMed  Google Scholar 

  53. Tsai SQ et al (2017) CIRCLE-seq: a highly sensitive in vitro screen for genome-wide CRISPR-Cas9 nuclease off-targets. Nat Methods 14(6):607–614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Cameron P et al (2017) Mapping the genomic landscape of CRISPR-Cas9 cleavage. Nat Methods 14(6):600–606

    Article  CAS  PubMed  Google Scholar 

  55. Frock RL et al (2015) Genome-wide detection of DNA double-stranded breaks induced by engineered nucleases. Nat Biotechnol 33(2):179–186

    Article  CAS  PubMed  Google Scholar 

  56. Tsai SQ et al (2015) GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat Biotechnol 33(2):187–197

    Article  CAS  PubMed  Google Scholar 

  57. Wang X et al (2015) Unbiased detection of off-target cleavage by CRISPR-Cas9 and TALENs using integrase-defective lentiviral vectors. Nat Biotechnol 33(2):175–178

    Article  CAS  PubMed  Google Scholar 

  58. Crosetto N et al (2013) Nucleotide-resolution DNA double-strand break mapping by next-generation sequencing. Nat Methods 10(4):361–365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Smith C et al (2014) Whole-genome sequencing analysis reveals high specificity of CRISPR/Cas9 and TALEN-based genome editing in human iPSCs. Cell Stem Cell 15(1):12–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Veres A et al (2014) Low incidence of off-target mutations in individual CRISPR-Cas9 and TALEN targeted human stem cell clones detected by whole-genome sequencing. Cell Stem Cell 15(1):27–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Slaymaker IM et al (2016) Rationally engineered Cas9 nucleases with improved specificity. Science 351(6268):84–88

    Article  CAS  PubMed  Google Scholar 

  62. Kleinstiver BP et al (2016) High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature 529(7587):490–495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kuscu C et al (2014) Genome-wide analysis reveals characteristics of off-target sites bound by the Cas9 endonuclease. Nat Biotechnol 32(7):677–683

    Article  CAS  PubMed  Google Scholar 

  64. Lin L et al (2018) Genome-wide determination of on-target and off-target characteristics for RNA-guided DNA methylation by dCas9 methyltransferases. Gigascience 7(3):1–19

    Article  PubMed  CAS  Google Scholar 

  65. Kosicki M et al (2017) Dynamics of indel profiles induced by various CRISPR/Cas9 delivery methods. Prog Mol Biol Transl Sci 152:49–67

    Article  PubMed  Google Scholar 

  66. Kosicki M et al (2018) Repair of double-strand breaks induced by CRISPR-Cas9 leads to large deletions and complex rearrangements. Nat Biotechnol 36:765–771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Haeussler M et al (2016) Evaluation of off-target and on-target scoring algorithms and integration into the guide RNA selection tool CRISPOR. Genome Biol 17(1):148

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Shou J et al (2018) Precise and predictable CRISPR chromosomal rearrangements reveal principles of Cas9-mediated nucleotide insertion. Mol Cell 71(4):498–509.e4

    Article  CAS  PubMed  Google Scholar 

  69. Henrik Devitt Møller LL, Xi X, Petersen TS, Huang J, Yang L, Kjeldsen E, Jensen UB, Zhang X, Liu X, Xun X, Wang J, Yang H, Church GM, Bolund L, Regenberg B, Luo Y (2018) CRISPR-C: circularization of genes and chromosome by CRISPR in human cells. Nucleic Acids Res. https://doi.org/10.1093/nar/gky767

Download references

Acknowledgments

L.L. is supported by grants from the Lundbeck Foundation. Y.L is supported by BGI-Shenzhen, BGI-Qingdao, and grants from the Shenzhen Sanming Medical Project. We thank the whole team of Lars Bolund Institute of Regenerative Medicine (LBI), BGI, for their work and assistance on the CRISPR technologies, and especially Jun Wang from LBI for assistance with preparing Fig. 1. Y.L. is also supported by the Guangdong Provincial Key Laboratory of Genome Read and Write (No. 2017B030301011).

Disclaimer Statement: The views expressed in this article are the personal views of the author and may not be understood or quoted as being made on behalf of or reflecting the position of the Lars Bolund Institute of Regenerative Medicine, BGI, or one of its working parties.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yonglun Luo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Lin, L., Luo, Y. (2019). Tracking CRISPR’s Footprints. In: Luo, Y. (eds) CRISPR Gene Editing. Methods in Molecular Biology, vol 1961. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9170-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9170-9_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9169-3

  • Online ISBN: 978-1-4939-9170-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics