Abstract
MicroRNAs (miRNAs) are small RNA molecules, with their role in gene silencing and translational repression by binding to target mRNAs. Since it was discovered in 1993, miRNA are found in all eukaryotic cells conserved across the species. In recent years, regulation of miRNAs are extensively studied for their role in biological processes as well as in development and progression of various human diseases including retinal disorder, neurodegenerative diseases, cardiovascular disease and cancer. This chapter summarises miRNA biogenesis and explores their potential roles in a variety of diseases. miRNAs holds huge potential for diagnostic and prognostic biomarkers, and as predictors of drug response.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75(5):843–854
Felekkis K, Touvana E, Stefanou C et al (2010) microRNAs: a newly described class of encoded molecules that play a role in health and disease. Hippokratia 14(4):236–240
Friedlander MR, Lizano E, Houben AJ et al (2014) Evidence for the biogenesis of more than 1,000 novel human microRNAs. Genome Biol 15(4):R57. doi:10.1186/gb-2014-15-4-r57
Kozomara A, Griffiths-Jones S (2011) miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res 39(Database issue):D152–D157. doi:10.1093/nar/gkq1027
Bentwich I, Avniel A, Karov Y et al (2005) Identification of hundreds of conserved and nonconserved human microRNAs. Nat Genet 37(7):766–770. doi:10.1038/ng1590
Filipowicz W, Bhattacharyya SN, Sonenberg N (2008) Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 9(2):102–114. doi:10.1038/nrg2290
Saetrom P, Heale BS, Snove O Jr et al (2007) Distance constraints between microRNA target sites dictate efficacy and cooperativity. Nucleic Acids Res 35(7):2333–2342. doi:10.1093/nar/gkm133
Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297
Reinhart BJ, Slack FJ, Basson M et al (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403(6772):901–906. doi:10.1038/35002607
Lagos-Quintana M, Rauhut R, Lendeckel W et al (2001) Identification of novel genes coding for small expressed RNAs. Science (New York, NY) 294(5543):853–858. doi:10.1126/science.1064921
Lau NC, Lim LP, Weinstein EG et al (2001) An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science (New York, NY) 294(5543):858–862. doi:10.1126/science.1065062
Lee RC, Ambros V (2001) An extensive class of small RNAs in Caenorhabditis elegans. Science (New York, NY) 294(5543):862–864. doi:10.1126/science.1065329
Wu L, Fan J, Belasco JG (2006) MicroRNAs direct rapid deadenylation of mRNA. Proc Natl Acad Sci U S A 103(11):4034–4039. doi:10.1073/pnas.0510928103
Lee Y, Jeon K, Lee JT et al (2002) MicroRNA maturation: stepwise processing and subcellular localization. EMBO J 21(17):4663–4670
Chen CZ, Li L, Lodish HF et al (2004) MicroRNAs modulate hematopoietic lineage differentiation. Science (New York, NY) 303(5654):83–86. doi:10.1126/science.1091903
Monteys AM, Spengler RM, Wan J et al (2010) Structure and activity of putative intronic miRNA promoters. RNA 16(3):495–505. doi:10.1261/rna.1731910
Martinez NJ, Ow MC, Barrasa MI et al (2008) A C. elegans genome-scale microRNA network contains composite feedback motifs with high flux capacity. Genes Dev 22(18):2535–2549. doi:10.1101/gad.1678608
Okamura K, Hagen JW, Duan H et al (2007) The mirtron pathway generates microRNA-class regulatory RNAs in Drosophila. Cell 130(1):89–100. doi:10.1016/j.cell.2007.06.028
Lee Y, Ahn C, Han J et al (2003) The nuclear RNase III Drosha initiates microRNA processing. Nature 425(6956):415–419. doi:10.1038/nature01957
Westholm JO, Lai EC (2011) Mirtrons: microRNA biogenesis via splicing. Biochimie 93(11):1897–1904. doi:10.1016/j.biochi.2011.06.017
Yi R, Qin Y, Macara IG et al (2003) Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev 17(24):3011–3016. doi:10.1101/gad.1158803
Aravin AA, Lagos-Quintana M, Yalcin A et al (2003) The small RNA profile during Drosophila melanogaster development. Dev Cell 5(2):337–350
Lagos-Quintana M, Rauhut R, Yalcin A et al (2002) Identification of tissue-specific microRNAs from mouse. Curr Biol 12(9):735–739
MacRae IJ, Doudna JA (2007) Ribonuclease revisited: structural insights into ribonuclease III family enzymes. Curr Opin Struct Biol 17(1):138–145. doi:10.1016/j.sbi.2006.12.002
Lau PW, Guiley KZ, De N et al (2012) The molecular architecture of human Dicer. Nat Struct Mol Biol 19(4):436–440. doi:10.1038/nsmb.2268
Papp I, Mette MF, Aufsatz W et al (2003) Evidence for nuclear processing of plant micro RNA and short interfering RNA precursors. Plant Physiol 132(3):1382–1390
Bollman KM, Aukerman MJ, Park MY et al (2003) HASTY, the Arabidopsis ortholog of exportin 5/MSN5, regulates phase change and morphogenesis. Development 130(8):1493–1504
Forman JJ, Legesse-Miller A, Coller HA (2008) A search for conserved sequences in coding regions reveals that the let-7 microRNA targets Dicer within its coding sequence. Proc Natl Acad Sci U S A 105(39):14879–14884. doi:10.1073/pnas.0803230105
Ma E, MacRae IJ, Kirsch JF et al (2008) Autoinhibition of human dicer by its internal helicase domain. J Mol Biol 380(1):237–243. doi:10.1016/j.jmb.2008.05.005
Lee Y, Hur I, Park SY et al (2006) The role of PACT in the RNA silencing pathway. EMBO J 25(3):522–532. doi:10.1038/sj.emboj.7600942
Suzuki HI, Arase M, Matsuyama H et al (2011) MCPIP1 ribonuclease antagonizes dicer and terminates microRNA biogenesis through precursor microRNA degradation. Mol Cell 44(3):424–436. doi:10.1016/j.molcel.2011.09.012
Sanghvi VR, Steel LF (2011) The cellular TAR RNA binding protein, TRBP, promotes HIV-1 replication primarily by inhibiting the activation of double-stranded RNA-dependent kinase PKR. J Virol 85(23):12614–12621. doi:10.1128/JVI.05240-11
Diederichs S, Haber DA (2007) Dual role for argonautes in microRNA processing and posttranscriptional regulation of microRNA expression. Cell 131(6):1097–1108. doi:10.1016/j.cell.2007.10.032
Yang N, Cao Y, Han P et al (2012) Tools for investigation of the RNA endonuclease activity of mammalian Argonaute2 protein. Anal Chem 84(5):2492–2497. doi:10.1021/ac2032854
Tolia NH, Joshua-Tor L (2007) Slicer and the argonautes. Nat Chem Biol 3(1):36–43. doi:10.1038/nchembio848
Hutvagner G, Zamore PD (2002) A microRNA in a multiple-turnover RNAi enzyme complex. Science (New York, NY) 297(5589):2056–2060. doi:10.1126/science.1073827
Lai EC (2002) Micro RNAs are complementary to 3′ UTR sequence motifs that mediate negative post-transcriptional regulation. Nat Genet 30(4):363–364. doi:10.1038/ng865
Grishok A, Pasquinelli AE, Conte D et al (2001) Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell 106(1):23–34
Ameres SL, Horwich MD, Hung JH et al (2010) Target RNA-directed trimming and tailing of small silencing RNAs. Science (New York, NY) 328(5985):1534–1539. doi:10.1126/science.1187058
Baccarini A, Chauhan H, Gardner TJ et al (2011) Kinetic analysis reveals the fate of a microRNA following target regulation in mammalian cells. Curr Biol 21(5):369–376. doi:10.1016/j.cub.2011.01.067
Katoh T, Sakaguchi Y, Miyauchi K et al (2009) Selective stabilization of mammalian microRNAs by 3′ adenylation mediated by the cytoplasmic poly(A) polymerase GLD-2. Genes Dev 23(4):433–438. doi:10.1101/gad.1761509
Chen AJ, Paik JH, Zhang H et al (2012) STAR RNA-binding protein Quaking suppresses cancer via stabilization of specific miRNA. Genes Dev 26(13):1459–1472. doi:10.1101/gad.189001.112
Tang R, Li L, Zhu D et al (2012) Mouse miRNA-709 directly regulates miRNA-15a/16-1 biogenesis at the posttranscriptional level in the nucleus: evidence for a microRNA hierarchy system. Cell Res 22(3):504–515. doi:10.1038/cr.2011.137
Colombo M, Moita C, van Niel G et al (2013) Analysis of ESCRT functions in exosome biogenesis, composition and secretion highlights the heterogeneity of extracellular vesicles. J Cell Sci 126(Pt 24):5553–5565. doi:10.1242/jcs.128868
Pan BT, Johnstone RM (1983) Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: selective externalization of the receptor. Cell 33(3):967–978
Rani S, Ryan AE, Griffin MD et al (2015) Mesenchymal stem cell-derived extracellular vesicles: toward cell-free therapeutic applications. Mol Ther 23(5):812–823. doi:10.1038/mt.2015.44
Rani S, Ritter T (2015) The Exosome—a naturally secreted nanoparticle and its application to wound healing. Adv Mater. doi:10.1002/adma.201504009
Feng D, Zhao WL, Ye YY et al (2010) Cellular internalization of exosomes occurs through phagocytosis. Traffic (Copenhagen, Denmark) 11(5):675–687. doi:10.1111/j.1600-0854.2010.01041.x
Morelli AE, Larregina AT, Shufesky WJ et al (2004) Endocytosis, intracellular sorting, and processing of exosomes by dendritic cells. Blood 104(10):3257–3266. doi:10.1182/blood-2004-03-0824
Svensson KJ, Christianson HC, Wittrup A et al (2013) Exosome uptake depends on ERK1/2-heat shock protein 27 signaling and lipid Raft-mediated endocytosis negatively regulated by caveolin-1. J Biol Chem 288(24):17713–17724. doi:10.1074/jbc.M112.445403
Andreeva K, Cooper NG (2014) MicroRNAs in the neural retina. Int J Genomics 2014:165897. doi:10.1155/2014/165897
Damiani D, Alexander JJ, O’Rourke JR et al (2008) Dicer inactivation leads to progressive functional and structural degeneration of the mouse retina. J Neurosci 28(19):4878–4887. doi:10.1523/jneurosci.0828-08.2008
Pinter R, Hindges R (2010) Perturbations of microRNA function in mouse dicer mutants produce retinal defects and lead to aberrant axon pathfinding at the optic chiasm. PLoS One 5(4), e10021. doi:10.1371/journal.pone.0010021
Lumayag S, Haldin CE, Corbett NJ et al (2013) Inactivation of the microRNA-183/96/182 cluster results in syndromic retinal degeneration. Proc Natl Acad Sci U S A 110(6):E507–E516. doi:10.1073/pnas.1212655110
Ragusa M, Caltabiano R, Russo A et al (2013) MicroRNAs in vitreus humor from patients with ocular diseases. Mol Vis 19:430–440
Xin H, Li Y, Buller B et al (2012) Exosome-mediated transfer of miR-133b from multipotent mesenchymal stromal cells to neural cells contributes to neurite outgrowth. Stem Cells (Dayton, Ohio) 30(7):1556–1564. doi:10.1002/stem.1129
Romaine SP, Tomaszewski M, Condorelli G et al (2015) MicroRNAs in cardiovascular disease: an introduction for clinicians. Heart 101(12):921–928. doi:10.1136/heartjnl-2013-305402
Zhao W, Zhao SP, Zhao YH (2015) MicroRNA-143/-145 in cardiovascular diseases. BioMed Res Int 2015:531740. doi:10.1155/2015/531740
Feng Y, Huang W, Wani M et al (2014) Ischemic preconditioning potentiates the protective effect of stem cells through secretion of exosomes by targeting Mecp2 via miR-22. PLoS One 9(2), e88685. doi:10.1371/journal.pone.0088685
Yu B, Gong M, Wang Y et al (2013) Cardiomyocyte protection by GATA-4 gene engineered mesenchymal stem cells is partially mediated by translocation of miR-221 in microvesicles. PLoS One 8(8), e73304. doi:10.1371/journal.pone.0073304
van Schooneveld E, Wildiers H, Vergote I et al (2015) Dysregulation of microRNAs in breast cancer and their potential role as prognostic and predictive biomarkers in patient management. Breast Cancer Res 17:21. doi:10.1186/s13058-015-0526-y
Rani S, Gately K, Crown J et al (2013) Global analysis of serum microRNAs as potential biomarkers for lung adenocarcinoma. Cancer Biol Ther 14(12):1104–1112. doi:10.4161/cbt.26370
Peng Y, Dai Y, Hitchcock C et al (2013) Insulin growth factor signaling is regulated by microRNA-486, an underexpressed microRNA in lung cancer. Proc Natl Acad Sci U S A 110(37):15043–15048. doi:10.1073/pnas.1307107110
Zhu J, Zheng Z, Wang J et al (2014) Different miRNA expression profiles between human breast cancer tumors and serum. Front Genet 5:149. doi:10.3389/fgene.2014.00149
Gee HE, Camps C, Buffa FM et al (2008) MicroRNA-10b and breast cancer metastasis. Nature 455(7216):E8–E9. doi:10.1038/nature07362, author reply E9
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer Science+Business Media New York
About this protocol
Cite this protocol
Vishnoi, A., Rani, S. (2017). MiRNA Biogenesis and Regulation of Diseases: An Overview. In: Rani, S. (eds) MicroRNA Profiling. Methods in Molecular Biology, vol 1509. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6524-3_1
Download citation
DOI: https://doi.org/10.1007/978-1-4939-6524-3_1
Published:
Publisher Name: Humana Press, New York, NY
Print ISBN: 978-1-4939-6522-9
Online ISBN: 978-1-4939-6524-3
eBook Packages: Springer Protocols