Abstract
This chapter aims to provide an overview of the class of multi-criteria recommender systems, i.e., the category of recommender systems that use multi-criteria preference ratings. Traditionally, the vast majority of recommender systems literature has focused on providing recommendations by modelling a user’s utility (or preference) for an item as a single preference rating. However, where possible, capturing richer user preferences along several dimensions—for example, capturing not only the user’s overall preference for a given movie but also her preferences for specific movie aspects (such as acting, story, or visual effects)—can provide opportunities for further improvements in recommendation quality. As a result, a number of recommendation techniques that attempt to take advantage of such multi-criteria preference information have been developed in recent years. A review of current algorithms that use multi-criteria ratings for calculating predictions and generating recommendations is provided. The chapter concludes with a discussion on open issues and future challenges for the class of multi-criteria rating recommenders.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
In some recommender systems, R(u, i) might not contain the overall ratings r 0 in addition to k multi-criteria ratings, i.e., R(u, i) = (r 1, …, r k ). In this case, all the formulas in this subsection will still be applicable with index c ∈ { 1, …, k}, as opposed to c ∈ { 0, 1, …, k}.
References
Aciar, S., Zhang, D., Simoff, S., Debenham, J.: Informed recommender: Basing recommendations on consumer product reviews. IEEE Intelligent systems 22(3), 39–47 (2007)
Adomavicius, G., Kwon, Y.: New recommendation techniques for multicriteria rating systems. IEEE Intelligent Systems 22(3), 48–55 (2007)
Adomavicius, G., Sankaranarayanan, R., Sen, S., Tuzhilin, A.: Incorporating contextual information in recommender systems using a multidimensional approach. ACM Transactions on Information Systems (TOIS) 23(1), 103–145 (2005)
Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and Data Engineering 17(6), 734–749 (2005)
Akhtarzada, A., Calude, C., Hosking, J.: A multi-criteria metric algorithm for recommender systems. Fundamenta Informaticae 110(1), 1–11 (2011)
Amatriain, X., Basilico, J.: Netflix recommendations: Beyond the 5 stars. http://techblog.netflix.com/2012/04/netflix-recommendations-beyond-5-stars.html (2012). Accessed: 2014-06-28
Balabanovic, M., Shoham, Y.: Fab: content-based, collaborative recommendation. Communications of the ACM 40(3), 66–72 (1997)
Blanco, H., Ricci, F.: Acquiring user profiles from implicit feedback in a conversational recommender system. In: Q. Yang, I. King, Q. Li, P. Pu, G. Karypis (eds.) RecSys, pp. 307–310. ACM (2013)
Blanco, H., Ricci, F., Bridge, D.: Conversational query revision with a finite user profiles model. In: G. Amati, C. Carpineto, G. Semeraro (eds.) IIR, CEUR Workshop Proceedings, vol. 835, pp. 77–88. CEUR-WS.org (2012)
Boulkrinat, S., Hadjali, A., Mokhtari, A.: Towards recommender systems based on a fuzzy preference aggregation. In: 8th conference of the European Society for Fuzzy Logic and Technology (EUSFLAT-13). Atlantis Press (2013)
Brandt, D.: How service marketers can identify value-enhancing service elements. Journal of Services Marketing 2(3), 35–41 (1988)
Breese, J., Heckerman, D., Kadie, C.: Empirical analysis of predictive algorithms for collaborative filtering. In: Proc. of the 14th Conference on Uncertainty in Artificial Intelligence, vol. 461, pp. 43–52. San Francisco, CA (1998)
Bridge, D.: Towards conversational recommender systems: A dialogue grammar approach. In: ECCBR Workshops, pp. 9–22 (2002)
Burke, R.: Knowledge-based recommender systems. Encyclopedia of Library and Information Systems 69(Supplement 32), 175–186 (2000)
Burke, R.: Hybrid recommender systems: Survey and experiments. User Modeling and User-Adapted Interaction 12(4), 331–370 (2002)
Burke, R.: Hybrid web recommender systems. Lecture Notes in Computer Science 4321, 377–408 (2007)
Burke, R., Ramezani, M.: Matching recommendation technologies and domains. In: Recommender Systems Handbook, pp. 367–386. Springer (2011)
Charnes, A., Cooper, W., Rhodes, E.: Measuring the efficiency of decision making units. European Journal of Operational Research 2(6), 429–444 (1978)
Chow, C., Liu, C.: Approximating discrete probability distributions with dependence trees. IEEE Transactions on Information Theory 14(3), 462–467 (1968)
De Lathauwer, L., De Moor, B., Vandewalle, J.: A multilinear singular value decomposition. SIAM Journal on Matrix Analysis and Applications 21(4), 1253–1278 (2000)
Dempster, A., Laird, N., Rubin, D.: Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society.Series B (Methodological) 39(1), 1–38 (1977)
Dolan, J.: Multi-criteria clinical decision support. The Patient: Patient-Centered Outcomes Research 3(4), 229–248 (2010). DOI 10.2165/11539470-000000000-00000. URL http://dx.doi.org/10.2165/11539470-000000000-00000
Drucker, H., Burges, C., Kaufman, L., Smola, A., Vapnik, V.: Support vector regression machines. In: M. Mozer, M. Jordan, T. Petsche (eds.) NIPS, pp. 155–161. MIT Press (1996)
Ehrgott, M.: Multicriteria optimization. Springer Verlag (2005)
Fan, J., Xu, L.: A robust multi-criteria recommendation approach with preference-based similarity and support vector machine. In: Advances in Neural Networks–ISNN 2013, pp. 385–394. Springer (2013)
Freund, Y., Iyer, R., Schapire, R., Singer, Y.: An efficient boosting algorithm for combining preferences. The Journal of Machine Learning Research 4, 933–969 (2003)
Fuchs, M., Zanker, M.: Multi-criteria ratings for recommender systems: An empirical analysis in the tourism domain. In: E-Commerce and Web Technologies, pp. 100–111. Springer (2012)
Funk, S.: Netflix update: Try this at home. http://sifter.org/~simon/journal/20061211.html (2006)
Gedikli, F., Jannach, D.: Rating items by rating tags. In: Proceedings of the 2010 Workshop on Recommender Systems and the Social Web at ACM RecSys, pp. 25–32 (2010)
Gedikli, F., Jannach, D.: Improving recommendation accuracy based on item-specific tag preferences. ACM Transactions on Intelligent Systems and Technology (TIST) 4(1), 11 (2013)
Herlocker, J., Konstan, J., Terveen, L., Riedl, J.: Evaluating collaborative filtering recommender systems. ACM Transactions on Information Systems (TOIS) 22(1), 5–53 (2004)
Hofmann, T.: Latent semantic models for collaborative filtering. ACM Trans. Inf. Syst. 22(1), 89–115 (2004). DOI 10.1145/963770.963774. URL http://doi.acm.org/10.1145/963770.963774
Jameson, A., Smyth, B.: Recommendation to groups. Lecture Notes in Computer Science 4321, 596–627 (2007)
Jannach, D., Gedikli, F., Karakaya, Z., Juwig, O.: Recommending hotels based on multi-dimensional customer ratings. In: Information and Communication Technologies in Tourism 2012, pp. 320–331. Springer (2012)
Jannach, D., Karakaya, Z., Gedikli, F.: Accuracy improvements for multi-criteria recommender systems. In: Proceedings of the 13th ACM Conference on Electronic Commerce, pp. 674–689. ACM (2012)
Jiang, T., Tuzhilin, A.: Segmenting customers from population to individuals: Does 1-to-1 keep your customers forever? IEEE Trans. on Knowl. and Data Eng. 18(10), 1297–1311 (2006). DOI 10.1109/TKDE.2006.164. URL http://dx.doi.org/10.1109/TKDE.2006.164
Kelly, J., Bridge, D.: Enhancing the diversity of conversational collaborative recommendations: a comparison. Artif. Intell. Rev. 25(1-2), 79–95 (2006)
Konstan, J.: Introduction to recommender systems: Algorithms and evaluation. ACM Transactions on Information Systems (TOIS) 22(1), 1–4 (2004)
Konstan, J., Miller, B., Maltz, D., Herlocker, J., Gordon, L., Riedl, J.: Grouplens: applying collaborative filtering to usenet news. Communications of the ACM 40(3), 77–87 (1997)
Koren, Y.: Collaborative filtering with temporal dynamics. In: Proc. of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 447–456. ACM New York, NY, USA (2009)
Koren, Y., Bell, R.: Advances in collaborative filtering. In: Recommender Systems Handbook, pp. 145–186. Springer (2011)
Lakiotaki, K., Matsatsinis, N., Tsoukias, A.: Multicriteria user modeling in recommender systems. IEEE Intelligent Systems 26(2), 64–76 (2011). DOI http://doi.ieeecomputersociety.org/10.1109/MIS. 2011.33
Lakiotaki, K., Tsafarakis, S., Matsatsinis, N.: UTA-Rec: a recommender system based on multiple criteria analysis. In: Proc. of the 2008 ACM conference on Recommender systems, pp. 219–226. ACM New York, NY, USA (2008)
Lee, H., Teng, W.: Incorporating multi-criteria ratings in recommendation systems. In: IEEE International Conference on Information Reuse and Integration, pp. 273–278 (2007)
Lee, W., Liu, C., Lu, C.: Intelligent agent-based systems for personalized recommendations in internet commerce. Expert Systems with Applications 22(4), 275–284 (2002)
Li, Q., Wang, C., Geng, G.: Improving personalized services in mobile commerce by a novel multicriteria rating approach. In: Proc. of the 17th International World Wide Web Conference. Beijing, China (2008)
Liu, L., Mehandjiev, N., Xu, D.L.: Multi-criteria service recommendation based on user criteria preferences. In: Proceedings of the fifth ACM conference on Recommender systems, pp. 77–84. ACM (2011)
Lops, P., De Gemmis, M., Semeraro, G.: Content-based recommender systems: State of the art and trends. In: Recommender systems handbook, pp. 73–105. Springer (2011)
Lousame, F., Sánchez, E.: Multicriteria predictors using aggregation functions based on item views. In: Intelligent Systems Design and Applications (ISDA), 2010 10th International Conference on, pp. 947–952. IEEE (2010)
Maneeroj, S., Samatthiyadikun, P., Chalermpornpong, W., Panthuwadeethorn, S., Takasu, A.: Ranked criteria profile for multi-criteria rating recommender. In: Information Systems, Technology and Management, pp. 40–51. Springer (2012)
Manouselis, N., Costopoulou, C.: Analysis and classification of multi-criteria recommender systems. World Wide Web: Internet and Web Information Systems 10(4), 415–441 (2007)
Manouselis, N., Costopoulou, C.: Experimental analysis of design choices in multiattribute utility collaborative filtering. International Journal of Pattern Recognition and Artificial Intelligence 21(2), 311–332 (2007)
Manouselis, N., Costopoulou, C.: Overview of design options for neighborhood-based collaborative filtering systems. Personalized Information Retrieval and Access: Concepts, Methods and Practices pp. 30–54 (2008)
McAuley, J., Leskovec, J., Jurafsky, D.: Learning attitudes and attributes from multi-aspect reviews. In: Data Mining (ICDM), 2012 IEEE 12th International Conference on, pp. 1020–1025. IEEE (2012)
McCarthy, J.: Pocket restaurantfinder: A situated recommender system for groups. In: Proc. of the Workshop on Mobile Ad-Hoc Communication at the 2002 ACM Conference on Human Factors in Computer Systems. Minneapolis, MN (2002)
Middleton, S., Shadbolt, N., De Roure, D.: Ontological user profiling in recommender systems. ACM Transactions on Information Systems (TOIS) 22(1), 54–88 (2004)
Mikeli, A., Apostolou, D., Despotis, D.: A multi-criteria recommendation method for interval scaled ratings. In: Web Intelligence (WI) and Intelligent Agent Technologies (IAT), 2013 IEEE/WIC/ACM International Joint Conferences on, vol. 3, pp. 9–12. IEEE (2013)
Naak, A., Hage, H., Aimeur, E.: A multi-criteria collaborative filtering approach for research paper recommendation in papyres. In: E-Technologies: Innovation in an Open World, pp. 25–39. Springer (2009)
Nguyen, H., Haddawy, P.: DIVA: applying decision theory to collaborative filtering. In: Proc. of the AAAI Workshop on Recommender Systems. Madison, WI (1998)
Nguyen, H., Haddawy, P.: The decision-theoretic video advisor. In: Proc. of the 15th Conference on Uncertainty in Artificial Intelligence (UAI’99), pp. 494–501. Stockholm, Sweden (1999)
Nilashi, M., Ibrahim, O., Ithnin, N.: Hybrid recommendation approaches for multi-criteria collaborative filtering. Expert Systems with Applications 41(8), 3879–3900 (2014)
Nilashi, M., Ibrahim, O., Ithnin, N.: Multi-criteria collaborative filtering with high accuracy using higher order singular value decomposition and neuro-fuzzy system. Knowledge-Based Systems (2014)
Oard, D., Kim, J.: Modeling information content using observable behavior. In: Proc. of the Annual Meeting-American Society for Information Science, vol. 38, pp. 481–488. Washington DC. (2001)
O’Connor, M., Cosley, D., Konstan, J., Riedl, J.: PolyLens: A recommender system for groups of users. In: Proc. of the seventh conference on European Conference on Computer Supported Cooperative Work, pp. 199–218. Kluwer Academic Publishers (2001)
Oh, J., Jeong, O., Lee, E.: A personalized recommendation system based on product attribute-specific weights and improved user behavior analysis. In: Proceedings of the 4th International Conference on Ubiquitous Information Management and Communication, p. 57. ACM (2010)
Palanivel, K., Siavkumar, R.: Fuzzy multicriteria decision-making approach for collaborative recommender systems. International Journal of Computer Theory and Engineering 2(1), 57–63 (2010)
Palanivel, K., Sivakumar, R.: A study on implicit feedback in multicriteria e-commerce recommender system. Journal of Electronic Commerce Research 11(2) (2010)
Palanivel, K., Sivakumar, R.: A study on collaborative recommender system using fuzzy-multicriteria approaches. International Journal of Business Information Systems 7(4), 419–439 (2011)
Pazzani, M., Billsus, D.: Learning and revising user profiles: The identification of interesting web sites. Machine Learning 27(3), 313–331 (1997)
Plantie, M., Montmain, J., Dray, G.: Movies recommenders systems: automation of the information and evaluation phases in a multi-criteria decision-making process. Lecture Notes in Computer Science 3588, 633–644 (2005)
Premchaiswadi, W., Poompuang, P.: Hybrid profiling for hybrid multicriteria recommendation based on implicit multicriteria information. Applied Artificial Intelligence 27(3), 213–234 (2013)
Reilly, J., McCarthy, K., McGinty, L., Smyth, B.: Incremental critiquing. Knowledge-Based Systems 18(4-5), 143–151 (2005)
Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., Riedl, J.: GroupLens: An open architecture for collaborative filtering of netnews. In: Proc. of the 1994 ACM conference on Computer supported cooperative work, pp. 175–186 (1994)
Resnick, P., Varian, H.: Recommender systems. Communications of the ACM 40(3), 56–58 (1997)
Ribeiro, M., Lacerda, A., de Moura, E., Veloso, A., Ziviani, N.: Multi-objective pareto-efficient approaches for recommender systems. ACM Transactions on Intelligent Systems and Technology 9(1), 1–20 (2013)
Ricci, F., Arslan, B., Mirzadeh, N., Venturini, A.: ITR: a case-based travel advisory system. Lecture Notes in Computer Science pp. 613–627 (2002)
Ricci, F., Venturini, A., Cavada, D., Mirzadeh, N., Blaas, D., Nones, M.: Product recommendation with interactive query management and twofold similarity. Lecture Notes in Computer Science pp. 479–493 (2003)
Rodriguez, M., Posse, C., Zhang, E.: Multiple objective optimization in recommender systems. In: Proceedings of the Sixth ACM Conference on Recommender Systems, RecSys ’12, pp. 11–18. ACM, New York, NY, USA (2012). DOI 10.1145/2365952.2365961. URL http://doi.acm.org/10.1145/2365952.2365961
Saaty, T.: Optimization in integers and related extremal problems. McGraw-Hill (1970)
Sahoo, N., Krishnan, R., Duncan, G., Callan, J.: Research note-the halo effect in multicomponent ratings and its implications for recommender systems: The case of yahoo! movies. Information Systems Research 23(1), 231–246 (2012)
Samatthiyadikun, P., Takasu, A., Maneeroj, S.: Bayesian model for a multicriteria recommender system with support vector regression. In: Information Reuse and Integration (IRI), 2013 IEEE 14th International Conference on, pp. 38–45. IEEE (2013)
Sampaio, I., Ramalho, G., Corruble, V., Prudencio, R.: Acquiring the preferences of new users in recommender systems: the role of item controversy. In: Proc. of the 17th European Conference on Artificial Intelligence (ECAI) Workshop on Recommender Systems, pp. 107–110. Riva del Garda, Italy (2006)
Sanchez-Vilas, F., Ismoilov, J., Lousame, F.P., Sanchez, E., Lama, M.: Applying multicriteria algorithms to restaurant recommendation. In: Proceedings of the 2011 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology-Volume 01, pp. 87–91. IEEE Computer Society (2011)
Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Application of dimensionality reduction in recommender system - a case study. In: Proc. of the Workshop on Knowledge Discovery in the Web (WebKDD) (2000)
Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Item-based collaborative filtering recommendation algorithms. In: Proc. of the 10th International Conference on World Wide Web, pp. 285–295. ACM, New York, NY, USA (2001)
Schafer, J.: Dynamiclens: A dynamic user-interface for a meta-recommendation system. In: Proc. of the Workshop on the next stage of recommender systems research at the ACM Intelligent User Interfaces Conf. (2005)
Schmitt, C., Dengler, D., Bauer, M.: Multivariate preference models and decision making with the maut machine. In: Proc. of the 9th International Conference on User Modeling (UM 2003), pp. 297–302 (2003)
Shani, G., Gunawardana, A.: Evaluating recommendation systems. In: Recommender systems handbook, pp. 257–297. Springer (2011)
Si, L., Jin, R.: Flexible mixture model for collaborative filtering. In: Proc. of the 20th International Conference on Machine Learning, vol. 20, pp. 704–711. AAAI Press (2003)
Siskos, Y., Grigoroudis, E., Matsatsinis, N.: UTA methods. Springer (2005)
Takasu, A.: A multicriteria recommendation method for data with missing rating scores. In: Data and Knowledge Engineering (ICDKE), 2011 International Conference on, pp. 60–67. IEEE (2011)
Tang, T., McCalla, G.: The pedagogical value of papers: a collaborative-filtering based paper recommender. Journal of Digital Information 10(2) (2009)
Tangphoklang, P., Tanchotsrinon, C., Maneeroj, S., Sophatsathit, P.: A design of multi-criteria recommender system architecture for mobile banking business in thailand. In: Proceedings of the Second International Conference on Knowledge and Smart Technologies, vol. 2010 (2010)
Thorndike, E.: A constant error in psychological ratings. Journal of applied psychology 4(1), 25–9 (1920)
Trabelsi, W., Wilson, N., Bridge, D.: Comparative preferences induction methods for conversational recommenders. In: P. Perny, M. Pirlot, A. Tsoukiàs (eds.) ADT, Lecture Notes in Computer Science, vol. 8176, pp. 363–374. Springer (2013)
Viappiani, P., Craig, B.: Regret-based optimal recommendation sets in conversational recommender systems. In: D. Lawrence, A. Tuzhilin, R. Burke, A. Felfernig, L. Schmidt-Thieme (eds.) RecSys, pp. 101–108. ACM (2009)
Viappiani, P., Pu, P., Faltings, B.: Conversational recommenders with adaptive suggestions. In: J. Konstan, J. Riedl, B. Smyth (eds.) RecSys, pp. 89–96. ACM (2007)
Vuorikari, R., Manouselis, N., Duval, E.: Using metadata for storing, sharing, and reusing evaluations in social recommendation: the case of learning resources. Social Information Retrieval Systems: Emerging Technologies and Applications for Searching the Web Effectively pp. 87–107 (2008)
Zarrinkalam, F., Kahani, M.: A multi-criteria hybrid citation recommendation system based on linked data. In: Computer and Knowledge Engineering (ICCKE), 2012 2nd International eConference on, pp. 283–288. IEEE (2012)
Zhang, Y., Zhuang, Y., Wu, J., Zhang, L.: Applying probabilistic latent semantic analysis to multi-criteria recommender system. Ai Communications 22(2), 97–107 (2009)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer Science+Business Media New York
About this chapter
Cite this chapter
Adomavicius, G., Kwon, Y. (2015). Multi-Criteria Recommender Systems. In: Ricci, F., Rokach, L., Shapira, B. (eds) Recommender Systems Handbook. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7637-6_25
Download citation
DOI: https://doi.org/10.1007/978-1-4899-7637-6_25
Publisher Name: Springer, Boston, MA
Print ISBN: 978-1-4899-7636-9
Online ISBN: 978-1-4899-7637-6
eBook Packages: Computer ScienceComputer Science (R0)