[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Multi-Criteria Recommender Systems

  • Chapter
Recommender Systems Handbook

Abstract

This chapter aims to provide an overview of the class of multi-criteria recommender systems, i.e., the category of recommender systems that use multi-criteria preference ratings. Traditionally, the vast majority of recommender systems literature has focused on providing recommendations by modelling a user’s utility (or preference) for an item as a single preference rating. However, where possible, capturing richer user preferences along several dimensions—for example, capturing not only the user’s overall preference for a given movie but also her preferences for specific movie aspects (such as acting, story, or visual effects)—can provide opportunities for further improvements in recommendation quality. As a result, a number of recommendation techniques that attempt to take advantage of such multi-criteria preference information have been developed in recent years. A review of current algorithms that use multi-criteria ratings for calculating predictions and generating recommendations is provided. The chapter concludes with a discussion on open issues and future challenges for the class of multi-criteria rating recommenders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 223.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 279.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    In some recommender systems, R(u, i) might not contain the overall ratings r 0 in addition to k multi-criteria ratings, i.e., R(u, i) = (r 1, , r k ). In this case, all the formulas in this subsection will still be applicable with index c ∈ { 1, , k}, as opposed to c ∈ { 0, 1, , k}.

References

  1. Aciar, S., Zhang, D., Simoff, S., Debenham, J.: Informed recommender: Basing recommendations on consumer product reviews. IEEE Intelligent systems 22(3), 39–47 (2007)

    Article  Google Scholar 

  2. Adomavicius, G., Kwon, Y.: New recommendation techniques for multicriteria rating systems. IEEE Intelligent Systems 22(3), 48–55 (2007)

    Article  Google Scholar 

  3. Adomavicius, G., Sankaranarayanan, R., Sen, S., Tuzhilin, A.: Incorporating contextual information in recommender systems using a multidimensional approach. ACM Transactions on Information Systems (TOIS) 23(1), 103–145 (2005)

    Article  Google Scholar 

  4. Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and Data Engineering 17(6), 734–749 (2005)

    Article  Google Scholar 

  5. Akhtarzada, A., Calude, C., Hosking, J.: A multi-criteria metric algorithm for recommender systems. Fundamenta Informaticae 110(1), 1–11 (2011)

    MathSciNet  Google Scholar 

  6. Amatriain, X., Basilico, J.: Netflix recommendations: Beyond the 5 stars. http://techblog.netflix.com/2012/04/netflix-recommendations-beyond-5-stars.html (2012). Accessed: 2014-06-28

  7. Balabanovic, M., Shoham, Y.: Fab: content-based, collaborative recommendation. Communications of the ACM 40(3), 66–72 (1997)

    Article  Google Scholar 

  8. Blanco, H., Ricci, F.: Acquiring user profiles from implicit feedback in a conversational recommender system. In: Q. Yang, I. King, Q. Li, P. Pu, G. Karypis (eds.) RecSys, pp. 307–310. ACM (2013)

    Google Scholar 

  9. Blanco, H., Ricci, F., Bridge, D.: Conversational query revision with a finite user profiles model. In: G. Amati, C. Carpineto, G. Semeraro (eds.) IIR, CEUR Workshop Proceedings, vol. 835, pp. 77–88. CEUR-WS.org (2012)

    Google Scholar 

  10. Boulkrinat, S., Hadjali, A., Mokhtari, A.: Towards recommender systems based on a fuzzy preference aggregation. In: 8th conference of the European Society for Fuzzy Logic and Technology (EUSFLAT-13). Atlantis Press (2013)

    Google Scholar 

  11. Brandt, D.: How service marketers can identify value-enhancing service elements. Journal of Services Marketing 2(3), 35–41 (1988)

    Article  Google Scholar 

  12. Breese, J., Heckerman, D., Kadie, C.: Empirical analysis of predictive algorithms for collaborative filtering. In: Proc. of the 14th Conference on Uncertainty in Artificial Intelligence, vol. 461, pp. 43–52. San Francisco, CA (1998)

    Google Scholar 

  13. Bridge, D.: Towards conversational recommender systems: A dialogue grammar approach. In: ECCBR Workshops, pp. 9–22 (2002)

    Google Scholar 

  14. Burke, R.: Knowledge-based recommender systems. Encyclopedia of Library and Information Systems 69(Supplement 32), 175–186 (2000)

    Google Scholar 

  15. Burke, R.: Hybrid recommender systems: Survey and experiments. User Modeling and User-Adapted Interaction 12(4), 331–370 (2002)

    Article  MATH  Google Scholar 

  16. Burke, R.: Hybrid web recommender systems. Lecture Notes in Computer Science 4321, 377–408 (2007)

    Article  Google Scholar 

  17. Burke, R., Ramezani, M.: Matching recommendation technologies and domains. In: Recommender Systems Handbook, pp. 367–386. Springer (2011)

    Google Scholar 

  18. Charnes, A., Cooper, W., Rhodes, E.: Measuring the efficiency of decision making units. European Journal of Operational Research 2(6), 429–444 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  19. Chow, C., Liu, C.: Approximating discrete probability distributions with dependence trees. IEEE Transactions on Information Theory 14(3), 462–467 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  20. De Lathauwer, L., De Moor, B., Vandewalle, J.: A multilinear singular value decomposition. SIAM Journal on Matrix Analysis and Applications 21(4), 1253–1278 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  21. Dempster, A., Laird, N., Rubin, D.: Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society.Series B (Methodological) 39(1), 1–38 (1977)

    Google Scholar 

  22. Dolan, J.: Multi-criteria clinical decision support. The Patient: Patient-Centered Outcomes Research 3(4), 229–248 (2010). DOI 10.2165/11539470-000000000-00000. URL http://dx.doi.org/10.2165/11539470-000000000-00000

    Google Scholar 

  23. Drucker, H., Burges, C., Kaufman, L., Smola, A., Vapnik, V.: Support vector regression machines. In: M. Mozer, M. Jordan, T. Petsche (eds.) NIPS, pp. 155–161. MIT Press (1996)

    Google Scholar 

  24. Ehrgott, M.: Multicriteria optimization. Springer Verlag (2005)

    Google Scholar 

  25. Fan, J., Xu, L.: A robust multi-criteria recommendation approach with preference-based similarity and support vector machine. In: Advances in Neural Networks–ISNN 2013, pp. 385–394. Springer (2013)

    Google Scholar 

  26. Freund, Y., Iyer, R., Schapire, R., Singer, Y.: An efficient boosting algorithm for combining preferences. The Journal of Machine Learning Research 4, 933–969 (2003)

    MathSciNet  Google Scholar 

  27. Fuchs, M., Zanker, M.: Multi-criteria ratings for recommender systems: An empirical analysis in the tourism domain. In: E-Commerce and Web Technologies, pp. 100–111. Springer (2012)

    Google Scholar 

  28. Funk, S.: Netflix update: Try this at home. http://sifter.org/~simon/journal/20061211.html (2006)

  29. Gedikli, F., Jannach, D.: Rating items by rating tags. In: Proceedings of the 2010 Workshop on Recommender Systems and the Social Web at ACM RecSys, pp. 25–32 (2010)

    Google Scholar 

  30. Gedikli, F., Jannach, D.: Improving recommendation accuracy based on item-specific tag preferences. ACM Transactions on Intelligent Systems and Technology (TIST) 4(1), 11 (2013)

    Google Scholar 

  31. Herlocker, J., Konstan, J., Terveen, L., Riedl, J.: Evaluating collaborative filtering recommender systems. ACM Transactions on Information Systems (TOIS) 22(1), 5–53 (2004)

    Article  Google Scholar 

  32. Hofmann, T.: Latent semantic models for collaborative filtering. ACM Trans. Inf. Syst. 22(1), 89–115 (2004). DOI 10.1145/963770.963774. URL http://doi.acm.org/10.1145/963770.963774

  33. Jameson, A., Smyth, B.: Recommendation to groups. Lecture Notes in Computer Science 4321, 596–627 (2007)

    Article  Google Scholar 

  34. Jannach, D., Gedikli, F., Karakaya, Z., Juwig, O.: Recommending hotels based on multi-dimensional customer ratings. In: Information and Communication Technologies in Tourism 2012, pp. 320–331. Springer (2012)

    Google Scholar 

  35. Jannach, D., Karakaya, Z., Gedikli, F.: Accuracy improvements for multi-criteria recommender systems. In: Proceedings of the 13th ACM Conference on Electronic Commerce, pp. 674–689. ACM (2012)

    Google Scholar 

  36. Jiang, T., Tuzhilin, A.: Segmenting customers from population to individuals: Does 1-to-1 keep your customers forever? IEEE Trans. on Knowl. and Data Eng. 18(10), 1297–1311 (2006). DOI 10.1109/TKDE.2006.164. URL http://dx.doi.org/10.1109/TKDE.2006.164

    Google Scholar 

  37. Kelly, J., Bridge, D.: Enhancing the diversity of conversational collaborative recommendations: a comparison. Artif. Intell. Rev. 25(1-2), 79–95 (2006)

    Article  MATH  Google Scholar 

  38. Konstan, J.: Introduction to recommender systems: Algorithms and evaluation. ACM Transactions on Information Systems (TOIS) 22(1), 1–4 (2004)

    Article  Google Scholar 

  39. Konstan, J., Miller, B., Maltz, D., Herlocker, J., Gordon, L., Riedl, J.: Grouplens: applying collaborative filtering to usenet news. Communications of the ACM 40(3), 77–87 (1997)

    Article  Google Scholar 

  40. Koren, Y.: Collaborative filtering with temporal dynamics. In: Proc. of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 447–456. ACM New York, NY, USA (2009)

    Google Scholar 

  41. Koren, Y., Bell, R.: Advances in collaborative filtering. In: Recommender Systems Handbook, pp. 145–186. Springer (2011)

    Google Scholar 

  42. Lakiotaki, K., Matsatsinis, N., Tsoukias, A.: Multicriteria user modeling in recommender systems. IEEE Intelligent Systems 26(2), 64–76 (2011). DOI http://doi.ieeecomputersociety.org/10.1109/MIS. 2011.33

    Google Scholar 

  43. Lakiotaki, K., Tsafarakis, S., Matsatsinis, N.: UTA-Rec: a recommender system based on multiple criteria analysis. In: Proc. of the 2008 ACM conference on Recommender systems, pp. 219–226. ACM New York, NY, USA (2008)

    Google Scholar 

  44. Lee, H., Teng, W.: Incorporating multi-criteria ratings in recommendation systems. In: IEEE International Conference on Information Reuse and Integration, pp. 273–278 (2007)

    Google Scholar 

  45. Lee, W., Liu, C., Lu, C.: Intelligent agent-based systems for personalized recommendations in internet commerce. Expert Systems with Applications 22(4), 275–284 (2002)

    Article  Google Scholar 

  46. Li, Q., Wang, C., Geng, G.: Improving personalized services in mobile commerce by a novel multicriteria rating approach. In: Proc. of the 17th International World Wide Web Conference. Beijing, China (2008)

    Google Scholar 

  47. Liu, L., Mehandjiev, N., Xu, D.L.: Multi-criteria service recommendation based on user criteria preferences. In: Proceedings of the fifth ACM conference on Recommender systems, pp. 77–84. ACM (2011)

    Google Scholar 

  48. Lops, P., De Gemmis, M., Semeraro, G.: Content-based recommender systems: State of the art and trends. In: Recommender systems handbook, pp. 73–105. Springer (2011)

    Google Scholar 

  49. Lousame, F., Sánchez, E.: Multicriteria predictors using aggregation functions based on item views. In: Intelligent Systems Design and Applications (ISDA), 2010 10th International Conference on, pp. 947–952. IEEE (2010)

    Google Scholar 

  50. Maneeroj, S., Samatthiyadikun, P., Chalermpornpong, W., Panthuwadeethorn, S., Takasu, A.: Ranked criteria profile for multi-criteria rating recommender. In: Information Systems, Technology and Management, pp. 40–51. Springer (2012)

    Google Scholar 

  51. Manouselis, N., Costopoulou, C.: Analysis and classification of multi-criteria recommender systems. World Wide Web: Internet and Web Information Systems 10(4), 415–441 (2007)

    Article  Google Scholar 

  52. Manouselis, N., Costopoulou, C.: Experimental analysis of design choices in multiattribute utility collaborative filtering. International Journal of Pattern Recognition and Artificial Intelligence 21(2), 311–332 (2007)

    Article  Google Scholar 

  53. Manouselis, N., Costopoulou, C.: Overview of design options for neighborhood-based collaborative filtering systems. Personalized Information Retrieval and Access: Concepts, Methods and Practices pp. 30–54 (2008)

    Google Scholar 

  54. McAuley, J., Leskovec, J., Jurafsky, D.: Learning attitudes and attributes from multi-aspect reviews. In: Data Mining (ICDM), 2012 IEEE 12th International Conference on, pp. 1020–1025. IEEE (2012)

    Google Scholar 

  55. McCarthy, J.: Pocket restaurantfinder: A situated recommender system for groups. In: Proc. of the Workshop on Mobile Ad-Hoc Communication at the 2002 ACM Conference on Human Factors in Computer Systems. Minneapolis, MN (2002)

    Google Scholar 

  56. Middleton, S., Shadbolt, N., De Roure, D.: Ontological user profiling in recommender systems. ACM Transactions on Information Systems (TOIS) 22(1), 54–88 (2004)

    Article  Google Scholar 

  57. Mikeli, A., Apostolou, D., Despotis, D.: A multi-criteria recommendation method for interval scaled ratings. In: Web Intelligence (WI) and Intelligent Agent Technologies (IAT), 2013 IEEE/WIC/ACM International Joint Conferences on, vol. 3, pp. 9–12. IEEE (2013)

    Google Scholar 

  58. Naak, A., Hage, H., Aimeur, E.: A multi-criteria collaborative filtering approach for research paper recommendation in papyres. In: E-Technologies: Innovation in an Open World, pp. 25–39. Springer (2009)

    Google Scholar 

  59. Nguyen, H., Haddawy, P.: DIVA: applying decision theory to collaborative filtering. In: Proc. of the AAAI Workshop on Recommender Systems. Madison, WI (1998)

    Google Scholar 

  60. Nguyen, H., Haddawy, P.: The decision-theoretic video advisor. In: Proc. of the 15th Conference on Uncertainty in Artificial Intelligence (UAI’99), pp. 494–501. Stockholm, Sweden (1999)

    Google Scholar 

  61. Nilashi, M., Ibrahim, O., Ithnin, N.: Hybrid recommendation approaches for multi-criteria collaborative filtering. Expert Systems with Applications 41(8), 3879–3900 (2014)

    Article  Google Scholar 

  62. Nilashi, M., Ibrahim, O., Ithnin, N.: Multi-criteria collaborative filtering with high accuracy using higher order singular value decomposition and neuro-fuzzy system. Knowledge-Based Systems (2014)

    Google Scholar 

  63. Oard, D., Kim, J.: Modeling information content using observable behavior. In: Proc. of the Annual Meeting-American Society for Information Science, vol. 38, pp. 481–488. Washington DC. (2001)

    Google Scholar 

  64. O’Connor, M., Cosley, D., Konstan, J., Riedl, J.: PolyLens: A recommender system for groups of users. In: Proc. of the seventh conference on European Conference on Computer Supported Cooperative Work, pp. 199–218. Kluwer Academic Publishers (2001)

    Google Scholar 

  65. Oh, J., Jeong, O., Lee, E.: A personalized recommendation system based on product attribute-specific weights and improved user behavior analysis. In: Proceedings of the 4th International Conference on Ubiquitous Information Management and Communication, p. 57. ACM (2010)

    Google Scholar 

  66. Palanivel, K., Siavkumar, R.: Fuzzy multicriteria decision-making approach for collaborative recommender systems. International Journal of Computer Theory and Engineering 2(1), 57–63 (2010)

    Google Scholar 

  67. Palanivel, K., Sivakumar, R.: A study on implicit feedback in multicriteria e-commerce recommender system. Journal of Electronic Commerce Research 11(2) (2010)

    Google Scholar 

  68. Palanivel, K., Sivakumar, R.: A study on collaborative recommender system using fuzzy-multicriteria approaches. International Journal of Business Information Systems 7(4), 419–439 (2011)

    Article  Google Scholar 

  69. Pazzani, M., Billsus, D.: Learning and revising user profiles: The identification of interesting web sites. Machine Learning 27(3), 313–331 (1997)

    Article  Google Scholar 

  70. Plantie, M., Montmain, J., Dray, G.: Movies recommenders systems: automation of the information and evaluation phases in a multi-criteria decision-making process. Lecture Notes in Computer Science 3588, 633–644 (2005)

    Article  Google Scholar 

  71. Premchaiswadi, W., Poompuang, P.: Hybrid profiling for hybrid multicriteria recommendation based on implicit multicriteria information. Applied Artificial Intelligence 27(3), 213–234 (2013)

    Article  Google Scholar 

  72. Reilly, J., McCarthy, K., McGinty, L., Smyth, B.: Incremental critiquing. Knowledge-Based Systems 18(4-5), 143–151 (2005)

    Article  Google Scholar 

  73. Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., Riedl, J.: GroupLens: An open architecture for collaborative filtering of netnews. In: Proc. of the 1994 ACM conference on Computer supported cooperative work, pp. 175–186 (1994)

    Google Scholar 

  74. Resnick, P., Varian, H.: Recommender systems. Communications of the ACM 40(3), 56–58 (1997)

    Article  Google Scholar 

  75. Ribeiro, M., Lacerda, A., de Moura, E., Veloso, A., Ziviani, N.: Multi-objective pareto-efficient approaches for recommender systems. ACM Transactions on Intelligent Systems and Technology 9(1), 1–20 (2013)

    Google Scholar 

  76. Ricci, F., Arslan, B., Mirzadeh, N., Venturini, A.: ITR: a case-based travel advisory system. Lecture Notes in Computer Science pp. 613–627 (2002)

    Google Scholar 

  77. Ricci, F., Venturini, A., Cavada, D., Mirzadeh, N., Blaas, D., Nones, M.: Product recommendation with interactive query management and twofold similarity. Lecture Notes in Computer Science pp. 479–493 (2003)

    Google Scholar 

  78. Rodriguez, M., Posse, C., Zhang, E.: Multiple objective optimization in recommender systems. In: Proceedings of the Sixth ACM Conference on Recommender Systems, RecSys ’12, pp. 11–18. ACM, New York, NY, USA (2012). DOI 10.1145/2365952.2365961. URL http://doi.acm.org/10.1145/2365952.2365961

  79. Saaty, T.: Optimization in integers and related extremal problems. McGraw-Hill (1970)

    Google Scholar 

  80. Sahoo, N., Krishnan, R., Duncan, G., Callan, J.: Research note-the halo effect in multicomponent ratings and its implications for recommender systems: The case of yahoo! movies. Information Systems Research 23(1), 231–246 (2012)

    Article  Google Scholar 

  81. Samatthiyadikun, P., Takasu, A., Maneeroj, S.: Bayesian model for a multicriteria recommender system with support vector regression. In: Information Reuse and Integration (IRI), 2013 IEEE 14th International Conference on, pp. 38–45. IEEE (2013)

    Google Scholar 

  82. Sampaio, I., Ramalho, G., Corruble, V., Prudencio, R.: Acquiring the preferences of new users in recommender systems: the role of item controversy. In: Proc. of the 17th European Conference on Artificial Intelligence (ECAI) Workshop on Recommender Systems, pp. 107–110. Riva del Garda, Italy (2006)

    Google Scholar 

  83. Sanchez-Vilas, F., Ismoilov, J., Lousame, F.P., Sanchez, E., Lama, M.: Applying multicriteria algorithms to restaurant recommendation. In: Proceedings of the 2011 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology-Volume 01, pp. 87–91. IEEE Computer Society (2011)

    Google Scholar 

  84. Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Application of dimensionality reduction in recommender system - a case study. In: Proc. of the Workshop on Knowledge Discovery in the Web (WebKDD) (2000)

    Google Scholar 

  85. Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Item-based collaborative filtering recommendation algorithms. In: Proc. of the 10th International Conference on World Wide Web, pp. 285–295. ACM, New York, NY, USA (2001)

    Google Scholar 

  86. Schafer, J.: Dynamiclens: A dynamic user-interface for a meta-recommendation system. In: Proc. of the Workshop on the next stage of recommender systems research at the ACM Intelligent User Interfaces Conf. (2005)

    Google Scholar 

  87. Schmitt, C., Dengler, D., Bauer, M.: Multivariate preference models and decision making with the maut machine. In: Proc. of the 9th International Conference on User Modeling (UM 2003), pp. 297–302 (2003)

    Google Scholar 

  88. Shani, G., Gunawardana, A.: Evaluating recommendation systems. In: Recommender systems handbook, pp. 257–297. Springer (2011)

    Google Scholar 

  89. Si, L., Jin, R.: Flexible mixture model for collaborative filtering. In: Proc. of the 20th International Conference on Machine Learning, vol. 20, pp. 704–711. AAAI Press (2003)

    Google Scholar 

  90. Siskos, Y., Grigoroudis, E., Matsatsinis, N.: UTA methods. Springer (2005)

    Google Scholar 

  91. Takasu, A.: A multicriteria recommendation method for data with missing rating scores. In: Data and Knowledge Engineering (ICDKE), 2011 International Conference on, pp. 60–67. IEEE (2011)

    Google Scholar 

  92. Tang, T., McCalla, G.: The pedagogical value of papers: a collaborative-filtering based paper recommender. Journal of Digital Information 10(2) (2009)

    Google Scholar 

  93. Tangphoklang, P., Tanchotsrinon, C., Maneeroj, S., Sophatsathit, P.: A design of multi-criteria recommender system architecture for mobile banking business in thailand. In: Proceedings of the Second International Conference on Knowledge and Smart Technologies, vol. 2010 (2010)

    Google Scholar 

  94. Thorndike, E.: A constant error in psychological ratings. Journal of applied psychology 4(1), 25–9 (1920)

    Article  Google Scholar 

  95. Trabelsi, W., Wilson, N., Bridge, D.: Comparative preferences induction methods for conversational recommenders. In: P. Perny, M. Pirlot, A. Tsoukiàs (eds.) ADT, Lecture Notes in Computer Science, vol. 8176, pp. 363–374. Springer (2013)

    Google Scholar 

  96. Viappiani, P., Craig, B.: Regret-based optimal recommendation sets in conversational recommender systems. In: D. Lawrence, A. Tuzhilin, R. Burke, A. Felfernig, L. Schmidt-Thieme (eds.) RecSys, pp. 101–108. ACM (2009)

    Google Scholar 

  97. Viappiani, P., Pu, P., Faltings, B.: Conversational recommenders with adaptive suggestions. In: J. Konstan, J. Riedl, B. Smyth (eds.) RecSys, pp. 89–96. ACM (2007)

    Google Scholar 

  98. Vuorikari, R., Manouselis, N., Duval, E.: Using metadata for storing, sharing, and reusing evaluations in social recommendation: the case of learning resources. Social Information Retrieval Systems: Emerging Technologies and Applications for Searching the Web Effectively pp. 87–107 (2008)

    Google Scholar 

  99. Zarrinkalam, F., Kahani, M.: A multi-criteria hybrid citation recommendation system based on linked data. In: Computer and Knowledge Engineering (ICCKE), 2012 2nd International eConference on, pp. 283–288. IEEE (2012)

    Google Scholar 

  100. Zhang, Y., Zhuang, Y., Wu, J., Zhang, L.: Applying probabilistic latent semantic analysis to multi-criteria recommender system. Ai Communications 22(2), 97–107 (2009)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gediminas Adomavicius .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Adomavicius, G., Kwon, Y. (2015). Multi-Criteria Recommender Systems. In: Ricci, F., Rokach, L., Shapira, B. (eds) Recommender Systems Handbook. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7637-6_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-7637-6_25

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-7636-9

  • Online ISBN: 978-1-4899-7637-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics