Abstract
The Netflix Prize put a spotlight on the importance and use of recommender systems in real-world applications. Many the competition provided many lessons about how to approach recommendation and many more have been learned since the Grand Prize was awarded in 2009. The evolution of industrial applications of recommender systems has been driven by the availability of different kinds of user data and the level of interest for the area within the research community. The goal of this chapter is to give an up-to-date overview of recommender systems techniques used in an industrial setting. We will give a high-level description the practical use of recommendation and personalization techniques. We will highlight some of the main lessons learned from the Netflix Prize. We will then use Netflix personalization as a case study to describe several approaches and techniques used in a real-world recommendation system. Finally, we will pinpoint what we see as some promising current research avenues and unsolved problems that deserve attention in this domain from an industry perspective.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
The application of Matrix Factorization to the task of rating prediction closely resembles the technique known as Singular Value Decomposition used, for example, to identify latent factors in Information Retrieval. Therefore, it is common to see people referring to this MF solution as SVD.
- 2.
For practical purposes we consider responses below a few hundred milliseconds (e.g. 200) to be real-time.
- 3.
Intermediate recommendations usually represent lists of items that have been pre-selected and even ranked in advanced but need to undergo further processing such as filtering or re-ranking before being presented to the user.
- 4.
Chukwa is a Hadoop subproject devoted to large-scale log collection and analysis.
- 5.
Hadoop is an open-source software framework for storage and large-scale processing of data-sets on clusters of commodity hardware.
- 6.
Apache Hive is a data warehouse infrastructure built on top of Hadoop for providing data summarization, query, and analysis.
- 7.
Pig is a high-level platform for creating MapReduce programs used with Hadoop using a language called Pig Latin.
- 8.
The Hadoop Distributed File System (HDFS) is a distributed file system designed to run on commodity hardware.
- 9.
Amazon S3 (Simple Storage Service) is an online file storage web service offered by Amazon Web Services.
- 10.
Apache Kafka is publish-subscribe messaging rethought as a distributed commit log.
- 11.
Apache Cassandra is an open source distributed database management system designed to handle large amounts of data across many commodity servers, providing high availability with no single point of failure.
- 12.
EVCache is a distributed in-memory data store for the cloud.
- 13.
MySQL is one of the most popular open source relational databases.
- 14.
References
Agarwal, D., Chen, B.C., Elango, P., Ramakrishnan, R.: Content recommendation on web portals. Commun. ACM 56(6), 92–101 (2013). DOI 10.1145/2461256.2461277. URL http://doi.acm.org/10.1145/2461256.2461277
Agarwal, D., Chen, B.C., Pang, B.: Personalized recommendation of user comments via factor models. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing, EMNLP ‘11, pp. 571–582. Association for Computational Linguistics, Stroudsburg, PA, USA (2011). URL http://dl.acm.org/citation.cfm?id=2145432.2145499
Ahmed, A., Teo, C.H., Vishwanathan, S., Smola, A.: Fair and balanced: Learning to present news stories. In: Proceedings of the Fifth ACM International Conference on Web Search and Data Mining, WSDM ‘12, pp. 333–342. ACM, New York, NY, USA (2012). DOI 10.1145/2124295.2124337. URL http://doi.acm.org/10.1145/2124295.2124337
Amatriain, X., Lathia, N., Pujol, J.M., Kwak, H., Oliver, N.: The wisdom of the few: a collaborative filtering approach based on expert opinions from the web. In: Proc. of 32nd ACM SIGIR, SIGIR ‘09, pp. 532–539. ACM, New York, NY, USA (2009). DOI 10.1145/1571941.1572033. URL http://dx.doi.org/10.1145/1571941.1572033
Amatriain, X., Pujol, J.M., Oliver, N.: I Like It…I Like It Not: Evaluating User Ratings Noise in Recommender Systems. In: G.J. Houben, G. McCalla, F. Pianesi, M. Zancanaro (eds.) User Modeling, Adaptation, and Personalization, vol. 5535, chap. 24, pp. 247–258. Springer Berlin (2009). DOI 10.1007/978-3-642-02247-0_24. URL http://dx.doi.org/10.1007/978-3-642-02247-0_24
Andersen, R., Borgs, C., Chayes, J., Feige, U., Flaxman, A., Kalai, A., Mirrokni, V., Tennenholtz, M.: Trust-based recommendation systems: an axiomatic approach. In: Proc. of the 17th WWW, WWW ‘08, pp. 199–208. ACM, New York, NY, USA (2008). DOI 10.1145/1367497.1367525. URL http://doi.acm.org/10.1145/1367497.1367525
Basu, C., Hirsh, H., Cohen, W.: Recommendation as classification: using social and content-based information in recommendation. In: Proc. of AAAI ‘98, AAAI ‘98/IAAI ‘98, pp. 714–720. American Association for Artificial Intelligence, Menlo Park, CA, USA (1998). URL http://dl.acm.org/citation.cfm?id=295240.295795
Bell, R.M., Koren, Y.: Lessons from the Netflix Prize Challenge. SIGKDD Explor. Newsl. 9(2), 75–79 (2007). DOI 10.1145/1345448.1345465. URL http://dx.doi.org/10.1145/1345448.1345465
Berndhardsson, E.: Music recommendations at spotify (2013)
Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003). URL http://dl.acm.org/citation.cfm?id=944919.944937
Bourke, S., McCarthy, K., Smyth, B.: Power to the people: exploring neighbourhood formations in social recommender system. In: Proc. of Recsys ‘11, RecSys ‘11, pp. 337–340. ACM, New York, NY, USA (2011). DOI 10.1145/2043932.2043997. URL http://doi.acm.org/10.1145/2043932.2043997
Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001)
Burges, C., Shaked, T., Renshaw, E., Lazier, A., Deeds, M., Hamilton, N., Hullender, G.: Learning to rank using gradient descent. In: Proceedings of the 22nd ICML, ICML ‘05, pp. 89–96. ACM, New York, NY, USA (2005). DOI 10.1145/1102351.1102363. URL http://dx.doi.org/10.1145/1102351.1102363
Burke, R.: The adaptive web. chap. Hybrid Web Recommender Systems, pp. 377–408 (2007). DOI 10.1007/978-3-540-72079-9_12. URL http://dx.doi.org/10.1007/978-3-540-72079-9_12
Cao, Z., Liu, T.: Learning to rank: From pairwise approach to listwise approach. In: In Proceedings of the 24th ICML, pp. 129–136 (2007). URL http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.64.1518
Celma, O.: Music Recommendation and Discovery: The Long Tail, Long Fail, and Long Play in the Digital Music Space. Springer (2010)
Chapelle, O., Keerthi, S.S.: Efficient algorithms for ranking with SVMs. Information Retrieval 13, 201–215 (2010). DOI 10.1007/s10791-009-9109-9. URL http://dx.doi.org/10.1007/s10791-009-9109-9
Chen, W.Y., Chu, J.C., Luan, J., Bai, H., Wang, Y., Chang, E.Y.: Collaborative filtering for orkut communities: Discovery of user latent behavior. In: Proceedings of the 18th International Conference on World Wide Web, WWW ‘09, pp. 681–690. ACM, New York, NY, USA (2009). DOI 10.1145/1526709.1526801. URL http://doi.acm.org/10.1145/1526709.1526801
Das, A.S., Datar, M., Garg, A., Rajaram, S.: Google news personalization: Scalable online collaborative filtering. In: Proceedings of the 16th International Conference on World Wide Web, WWW ‘07, pp. 271–280. ACM, New York, NY, USA (2007). DOI 10.1145/1242572.1242610. URL http://doi.acm.org/10.1145/1242572.1242610
Davidson, J., Liebald, B., Liu, J., Nandy, P., Van Vleet, T., Gargi, U., Gupta, S., He, Y., Lambert, M., Livingston, B., Sampath, D.: The youtube video recommendation system. In: Proceedings of the Fourth ACM Conference on Recommender Systems, RecSys ‘10, pp. 293–296. ACM, New York, NY, USA (2010). DOI 10.1145/1864708.1864770. URL http://doi.acm.org/10.1145/1864708.1864770
Diaz-Aviles, E., Georgescu, M., Nejdl, W.: Swarming to rank for recommender systems. In: Proc. of Recsys ‘12, RecSys ‘12, pp. 229–232. ACM, New York, NY, USA (2012). DOI 10.1145/2365952.2366001. URL http://doi.acm.org/10.1145/2365952.2366001
Elkan, C., Noto, K.: Learning classifiers from only positive and unlabeled data. In: Proc. of the 14th ACM SIGKDD, KDD ‘08, pp. 213–220. ACM, New York, NY, USA (2008). DOI 10.1145/1401890.1401920. URL http://dx.doi.org/10.1145/1401890.1401920
Freund, Y., Iyer, R., Schapire, R.E., Singer, Y.: An efficient boosting algorithm for combining preferences. J. Mach. Learn. Res. 4, 933–969 (2003). URL http://portal.acm.org/citation.cfm?id=964285
Frey, B.J., Dueck, D.: Clustering by passing messages between data points. Science 315, 2007 (2007)
Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Annals of Statistics pp. 1189–1232 (2001)
Fujiwara, Y., Nakatsuji, M., Yamamuro, T., Shiokawa, H., Onizuka, M.: Efficient personalized pagerank with accuracy assurance. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ‘12, pp. 15–23. ACM, New York, NY, USA (2012). DOI 10.1145/2339530.2339538. URL http://doi.acm.org/10.1145/2339530.2339538
Funk, S.: Netflix update: Try this at home. http://sifter.org/ simon/journal/20061211.html (2006). URL http://sifter.org/~simon/journal/20061211.html
Gorgoglione, M., Panniello, U., Tuzhilin, A.: The effect of context-aware recommendations on customer purchasing behavior and trust. In: Proc. of Recsys ‘11, RecSys ‘11, pp. 85–92. ACM, New York, NY, USA (2011). DOI 10.1145/2043932.2043951. URL http://doi.acm.org/10.1145/2043932.2043951
Gupta, P., Goel, A., Lin, J., Sharma, A., Wang, D., Zadeh, R.: Wtf: The who to follow service at twitter. In: Proceedings of the 22Nd International Conference on World Wide Web, WWW ‘13, pp. 505–514. International World Wide Web Conferences Steering Committee, Republic and Canton of Geneva, Switzerland (2013). URL http://dl.acm.org/citation.cfm?id=2488388.2488433
Herlocker, J.L., Konstan, J.A., Terveen, L.G., Riedl, J.T.: Evaluating collaborative filtering recommender systems. ACM Trans. Inf. Syst. 22(1), 5–53 (2004). DOI http://doi.acm.org/10.1145/963770.963772
Hu, Y., Koren, Y., Volinsky, C.: Collaborative Filtering for Implicit Feedback Datasets. In: Proc. of the 2008 Eighth ICDM, ICDM ‘08, vol. 0, pp. 263–272. IEEE Computer Society, Washington, DC, USA (2008). DOI 10.1109/ICDM.2008.22. URL http://dx.doi.org/10.1109/ICDM.2008.22
in the Industry, R.S.: Recommendation systems in the industry. Tutorial at Recsys 2009 (2009)
Jamali, M., Ester, M.: Trustwalker: a random walk model for combining trust-based and item-based recommendation. In: Proc. of KDD ‘09, KDD ‘09, pp. 397–406. ACM, New York, NY, USA (2009). DOI 10.1145/1557019.1557067. URL http://doi.acm.org/10.1145/1557019.1557067
Jeh, G., Widom, J.: Simrank: A measure of structural-context similarity. In: Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ‘02, pp. 538–543. ACM, New York, NY, USA (2002). DOI 10.1145/775047.775126. URL http://doi.acm.org/10.1145/775047.775126
Karatzoglou, A., Amatriain, X., Baltrunas, L., Oliver, N.: Multiverse recommendation: n-dimensional tensor factorization for context-aware collaborative filtering. In: Proc. of the fourth ACM Recsys, RecSys ‘10, pp. 79–86. ACM, New York, NY, USA (2010). DOI 10.1145/1864708.1864727. URL http://dx.doi.org/10.1145/1864708.1864727
Karimzadehgan, M., Li, W., Zhang, R., Mao, J.: A stochastic learning-to-rank algorithm and its application to contextual advertising. In: Proceedings of the 20th WWW, WWW ‘11, pp. 377–386. ACM, New York, NY, USA (2011). DOI 10.1145/1963405.1963460. URL http://doi.acm.org/10.1145/1963405.1963460
Karypis, G.: Evaluation of item-based top-n recommendation algorithms. In: CIKM ‘01: Proceedings of the tenth international conference on Information and knowledge management, pp. 247–254. ACM, New York, NY, USA (2001). DOI http://doi.acm.org/10.1145/ 502585.502627
Knijnenburg, B.P.: Conducting user experiments in recommender systems. In: Proceedings of the sixth ACM conference on Recommender systems, RecSys ‘12, pp. 3–4. ACM, New York, NY, USA (2012). DOI 10.1145/2365952.2365956. URL http://doi.acm.org/10.1145/2365952.2365956
Koenigstein, N., Nice, N., Paquet, U., Schleyen, N.: The xbox recommender system. In: Proceedings of the Sixth ACM Conference on Recommender Systems, RecSys ‘12, pp. 281–284. ACM, New York, NY, USA (2012). DOI 10.1145/2365952.2366015. URL http://doi.acm.org/10.1145/2365952.2366015
Kohavi, R., Deng, A., Frasca, B., Longbotham, R., Walker, T., Xu, Y.: Trustworthy online controlled experiments: five puzzling outcomes explained. In: Proceedings of KDD ‘12, pp. 786–794. ACM, New York, NY, USA (2012). DOI 10.1145/2339530.2339653. URL http://doi.acm.org/10.1145/2339530.2339653
Kohavi, R., Henne, R.M., Sommerfield, D.: Practical guide to controlled experiments on the web: Listen to your customers not to the hippo. In: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ‘07, pp. 959–967. ACM, New York, NY, USA (2007). DOI 10.1145/1281192.1281295. URL http://doi.acm.org/10.1145/1281192.1281295
Koren, Y.: Factorization meets the neighborhood: a multifaceted collaborative filtering model. In: Proceedings of the 14th ACM SIGKDD, KDD ‘08, pp. 426–434. ACM, New York, NY, USA (2008). DOI 10.1145/1401890.1401944. URL http://dx.doi.org/10.1145/1401890.1401944
Koren, Y.: Collaborative filtering with temporal dynamics. In: Proceedings of the 15th ACM SIGKDD, KDD ‘09, pp. 447–456. ACM, New York, NY, USA (2009). DOI 10.1145/1557019.1557072. URL http://dx.doi.org/10.1145/1557019.1557072
Koren, Y., Bell, R., Volinsky, C.: Matrix Factorization Techniques for Recommender Systems. Computer 42(8), 30–37 (2009). DOI 10.1109/MC.2009.263. URL http://dx.doi.org/10.1109/MC.2009.263
Lagun, D., Hsieh, C.H., Webster, D., Navalpakkam, V.: Towards better measurement of attention and satisfaction in mobile search. In: Proceedings of the 37th International ACM SIGIR Conference on Research & Development in Information Retrieval, SIGIR ‘14, pp. 113–122. ACM, New York, NY, USA (2014). DOI 10.1145/2600428.2609631. URL http://doi.acm.org/10.1145/2600428.2609631
Lamere, P.B.: I’ve got 10 million songs in my pocket: Now what? In: Proceedings of the Sixth ACM Conference on Recommender Systems, RecSys ‘12, pp. 207–208. ACM, New York, NY, USA (2012). DOI 10.1145/2365952.2365994. URL http://doi.acm.org/10.1145/2365952.2365994
Li, L., Chu, W., Langford, J., Schapire, R.E.: A contextual-bandit approach to personalized news article recommendation. In: Proceedings of the 19th International Conference on World Wide Web, WWW ‘10, pp. 661–670. ACM, New York, NY, USA (2010). DOI 10.1145/1772690.1772758. URL http://doi.acm.org/10.1145/1772690.1772758
Linden, G., Smith, B., York, J.: Amazon.com recommendations: Item-to-item collaborative filtering. IEEE Internet Computing 7(1), 76–80 (2003). DOI 10.1109/MIC.2003.1167344. URL http://dx.doi.org/10.1109/MIC.2003.1167344
Liu, J., Pedersen, E., Dolan, P.: Personalized news recommendation based on click behavior. In: 2010 International Conference on Intelligent User Interfaces (2010)
Liu, N.N., Meng, X., Liu, C., Yang, Q.: Wisdom of the better few: cold start recommendation via representative based rating elicitation. In: Proc. of RecSys ‘11, RecSys ‘11. ACM, New York, NY, USA (2011). DOI 10.1145/2043932.2043943. URL http://doi.acm.org/10.1145/2043932.2043943
McLaughlin, M.R., Herlocker, J.L.: A collaborative filtering algorithm and evaluation metric that accurately model the user experience. In: Proc. of SIGIR ‘04 (2004)
Mcnee, S.M., Riedl, J., Konstan, J.A.: Being accurate is not enough: how accuracy metrics have hurt recommender systems. In: CHI ‘06: CHI ‘06 extended abstracts on Human factors in computing systems, pp. 1097–1101. ACM Press, New York, NY, USA (2006). DOI 10.1145/ 1125451.1125659
Navalpakkam, V., Jentzsch, L., Sayres, R., Ravi, S., Ahmed, A., Smola, A.: Measurement and modeling of eye-mouse behavior in the presence of nonlinear page layouts. In: Proceedings of the 22Nd International Conference on World Wide Web, WWW ‘13, pp. 953–964. International World Wide Web Conferences Steering Committee, Republic and Canton of Geneva, Switzerland (2013). URL http://dl.acm.org/citation.cfm?id=2488388.2488471
Navalpakkam, V., Jentzsch, L., Sayres, R., Ravi, S., Ahmed, A., Smola, A.: Measurement and modeling of eye-mouse behavior in the presence of nonlinear page layouts. In: Proceedings of the 22Nd International Conference on World Wide Web, WWW ‘13, pp. 953–964. International World Wide Web Conferences Steering Committee, Republic and Canton of Geneva, Switzerland (2013). URL http://dl.acm.org/citation.cfm?id=2488388.2488471
Ning, X., Karypis, G.: Sparse linear methods with side information for top-n recommendations. In: Proc. of the 21st WWW, WWW ‘12 Companion, pp. 581–582. ACM, New York, NY, USA (2012). DOI 10.1145/2187980.2188137. URL http://doi.acm.org/10.1145/2187980.2188137
Noel, J., Sanner, S., Tran, K., Christen, P., Xie, L., Bonilla, E.V., Abbasnejad, E., Della Penna, N.: New objective functions for social collaborative filtering. In: Proc. of WWW ‘12, WWW ‘12, pp. 859–868. ACM, New York, NY, USA (2012). DOI 10.1145/2187836.2187952. URL http://doi.acm.org/10.1145/2187836.2187952
O’Donovan, J., Smyth, B.: Trust in recommender systems. In: Proc. of IUI ‘05, IUI ‘05, pp. 167–174. ACM, New York, NY, USA (2005). DOI 10.1145/1040830.1040870. URL http://doi.acm.org/10.1145/1040830.1040870
Oku, K., Nakajima, S., Miyazaki, J., Uemura, S.: Context-aware SVM for context-dependent information recommendation. In: Proc. of the 7th Conference on Mobile Data Management (2006)
Parra, D., Amatriain, X.: Walk the Talk: Analyzing the relation between implicit and explicit feedback for preference elicitation. In: J.A. Konstan, R. Conejo, J.L. Marzo, N. Oliver (eds.) User Modeling, Adaption and Personalization, Lecture Notes in Computer Science, vol. 6787, chap. 22, pp. 255–268. Springer, Berlin, Heidelberg (2011). DOI 10.1007/978-3-642-22362-4_22. URL http://dx.doi.org/10.1007/978-3-642-22362-4\_22
Parra, D., Karatzoglou, A., Amatriain, X., Yavuz, I.: Implicit feedback recommendation via implicit-to-explicit ordinal logistic regression mapping. In: Proc. of the 2011 CARS Workshop (2011)
Pizzato, L., Rej, T., Chung, T., Koprinska, I., Kay, J.: Recon: A reciprocal recommender for online dating. In: Proceedings of the Fourth ACM Conference on Recommender Systems, RecSys ‘10, pp. 207–214. ACM, New York, NY, USA (2010). DOI 10.1145/1864708.1864747. URL http://doi.acm.org/10.1145/1864708.1864747
Rabkin, A., Katz, R.: Chukwa: A system for reliable large-scale log collection. In: Proceedings of the 24th International Conference on Large Installation System Administration, LISA’10, pp. 1–15. USENIX Association, Berkeley, CA, USA (2010). URL http://dl.acm.org/citation.cfm?id=1924976.1924994
Radlinski, F., Kurup, M., Joachims, T.: How does clickthrough data reflect retrieval quality? In: Proc. of the 17th CIKM, CIKM ‘08, pp. 43–52. ACM, New York, NY, USA (2008). DOI 10.1145/1458082.1458092. URL http://dx.doi.org/10.1145/1458082.1458092
Reda, A., Park, Y., Tiwari, M., Posse, C., Shah, S.: Metaphor: A system for related search recommendations. In: Proceedings of the 21st ACM International Conference on Information and Knowledge Management, CIKM ‘12, pp. 664–673. ACM, New York, NY, USA (2012). DOI 10.1145/2396761.2396847. URL http://doi.acm.org/10.1145/2396761.2396847
Rendle, S.: Factorization Machines. In: Proc. of 2010 IEEE ICDM, pp. 995–1000. IEEE (2010). DOI 10.1109/ICDM.2010.127. URL http://dx.doi.org/10.1109/ICDM.2010.127
Rendle, S., Freudenthaler, C., Gantner, Z., Thieme, L.S.: BPR: Bayesian personalized ranking from implicit feedback. In: Proceedings of the 25th UAI, UAI ‘09, pp. 452–461. AUAI Press, Arlington, Virginia, United States (2009). URL http://portal.acm.org/citation.cfm?id=1795167
Rendle, S., Freudenthaler, C., Thieme, L.S.: Factorizing personalized Markov chains for next-basket recommendation. In: Proc. of the 19th WWW, WWW ‘10, pp. 811–820. ACM, New York, NY, USA (2010). DOI 10.1145/1772690.1772773. URL http://dx.doi.org/10.1145/1772690.1772773
Rendle, S., Gantner, Z., Freudenthaler, C., Schmidt-Thieme, L.: Fast context-aware recommendations with factorization machines. In: Proc. of the 34th ACM SIGIR, SIGIR ‘11, pp. 635–644. ACM, New York, NY, USA (2011). DOI 10.1145/2009916.2010002. URL http://doi.acm.org/10.1145/2009916.2010002
Ribeiro, M.T., Lacerda, A., Veloso, A., Ziviani, N.: Pareto-efficient hybridization for multi-objective recommender systems. In: Proceedings of the sixth ACM conference on Recommender systems, RecSys ‘12, pp. 19–26. ACM, New York, NY, USA (2012). DOI 10.1145/2365952.2365962. URL http://doi.acm.org/10.1145/2365952.2365962
Rodriguez, M., Posse, C., Zhang, E.: Multiple objective optimization in recommender systems. In: Proceedings of the sixth ACM conference on Recommender systems, RecSys ‘12, pp. 11–18. ACM, New York, NY, USA (2012). DOI 10.1145/2365952.2365961. URL http://doi.acm.org/10.1145/2365952.2365961
Salakhutdinov, R., Mnih, A., Hinton, G.E.: Restricted Boltzmann machines for collaborative filtering. In: Proc of ICML ‘07. ACM, New York, NY, USA (2007)
Science: Rockin’ to the Music Genome. Science 311(5765), 1223d– (2006). DOI 10.1126/science.311.5765.1223d. URL http://www.sciencemag.org
Sha, X., Quercia, D., Michiardi, P., Dell’Amico, M.: Spotting trends: the wisdom of the few. In: Proc. of the Recsys ‘12, RecSys ‘12, pp. 51–58. ACM, New York, NY, USA (2012). DOI 10.1145/2365952.2365967. URL http://doi.acm.org/10.1145/2365952.2365967
Shardanand, U., Maes, P.: Social information filtering: algorithms for automating word of mouth. In: Proc. of SIGCHI ‘95, CHI ‘95, pp. 210–217. ACM Press/Addison-Wesley Publishing Co., New York, NY, USA (1995). DOI 10.1145/223904.223931. URL http://dx.doi.org/10.1145/223904.223931
Shi, Y., Karatzoglou, A., Baltrunas, L., Larson, M., Hanjalic, A., Oliver, N.: TFMAP: optimizing MAP for top-n context-aware recommendation. In: Proc. of the 35th SIGIR, SIGIR ‘12, pp. 155–164. ACM, New York, NY, USA (2012). DOI 10.1145/2348283.2348308. URL http://doi.acm.org/10.1145/2348283.2348308
Shi, Y., Karatzoglou, A., Baltrunas, L., Larson, M., Oliver, N., Hanjalic, A.: CLiMF: learning to maximize reciprocal rank with collaborative less-is-more filtering. In: Proc. of the sixth Recsys, RecSys ‘12, pp. 139–146. ACM, New York, NY, USA (2012). DOI 10.1145/2365952.2365981. URL http://dx.doi.org/10.1145/2365952.2365981
Sigurbjörnsson, B., van Zwol, R.: Flickr tag recommendation based on collective knowledge. In: Proceedings of the 17th International Conference on World Wide Web, WWW ‘08, pp. 327–336. ACM, New York, NY, USA (2008). DOI 10.1145/1367497.1367542. URL http://doi.acm.org/10.1145/1367497.1367542
Steck, H.: Training and testing of recommender systems on data missing not at random. In: Proc. of the 16th ACM SIGKDD, KDD ‘10, pp. 713–722. ACM, New York, NY, USA (2010). DOI 10.1145/1835804.1835895. URL http://dx.doi.org/10.1145/1835804.1835895
Steck, H.: Item popularity and recommendation accuracy. In: Proceedings of the fifth ACM conference on Recommender systems, RecSys ‘11, pp. 125–132. ACM, New York, NY, USA (2011). DOI 10.1145/2043932.2043957. URL http://doi.acm.org/10.1145/2043932.2043957
Steck, H.: Evaluation of recommendations: Rating-prediction and ranking. In: Proceedings of the 7th ACM Conference on Recommender Systems, RecSys ‘13, pp. 213–220. ACM, New York, NY, USA (2013). DOI 10.1145/2507157.2507160. URL http://doi.acm.org/10.1145/2507157.2507160
Stern, D.H., Herbrich, R., Graepel, T.: Matchbox: large scale online bayesian recommendations. In: Proc. of the 18th WWW, WWW ‘09, pp. 111–120. ACM, New York, NY, USA (2009). DOI 10.1145/1526709.1526725. URL http://dx.doi.org/10.1145/1526709.1526725
Takács, G., Pilászy, I., Németh, B., Tikk, D.: Major components of the gravity recommendation system. SIGKDD Explor. Newsl. 9(2), 80–83 (2007). DOI 10.1145/1345448.1345466. URL http://doi.acm.org/10.1145/1345448.1345466
Takács, G., Tikk, D.: Alternating least squares for personalized ranking. In: Proc. of Recsys ‘12, RecSys ‘12, pp. 83–90. ACM, New York, NY, USA (2012). DOI 10.1145/2365952.2365972. URL http://doi.acm.org/10.1145/2365952.2365972
Tan, M., Xia, T., Guo, L., Wang, S.: Direct optimization of ranking measures for learning to rank models. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ‘13, pp. 856–864. ACM, New York, NY, USA (2013). DOI 10.1145/2487575.2487630. URL http://doi.acm.org/10.1145/2487575.2487630
Teh, Y.W., Jordan, M.I., Beal, M.J., Blei, D.M.: Hierarchical dirichlet processes. Journal of the American Statistical Association 101 (2004)
Valizadegan, H., Jin, R., Zhang, R., Mao, J.: Learning to Rank by Optimizing NDCG Measure. In: Proc. of SIGIR ‘00, pp. 41–48 (2000). URL http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.154.8402
Vargas, S., Castells, P.: Rank and relevance in novelty and diversity metrics for recommender systems. In: Proceedings of the fifth ACM conference on Recommender systems, RecSys ‘11, pp. 109–116. ACM, New York, NY, USA (2011). DOI 10.1145/2043932.2043955. URL http://doi.acm.org/10.1145/2043932.2043955
Wang, J., Sarwar, B., Sundaresan, N.: Utilizing related products for post-purchase recommendation in e-commerce. In: Proceedings of the Fifth ACM Conference on Recommender Systems, RecSys ‘11, pp. 329–332. ACM, New York, NY, USA (2011). DOI 10.1145/2043932.2043995. URL http://doi.acm.org/10.1145/2043932.2043995
Wang, J., Zhang, Y., Posse, C., Bhasin, A.: Is it time for a career switch? In: Proceedings of the 22Nd International Conference on World Wide Web, WWW ‘13, pp. 1377–1388. International World Wide Web Conferences Steering Committee, Republic and Canton of Geneva, Switzerland (2013). URL http://dl.acm.org/citation.cfm?id=2488388.2488509
Weston, J., Yee, H., Weiss, R.: Learning to rank recommendations with the k-order statistic loss. In: ACM International Conference on Recommender Systems (RecSys) (2013). URL http://dl.acm.org/citation.cfm?id=2507210
Xia, F., Liu, T.Y., Wang J.and Zhang, W., Li, H.: Listwise approach to learning to rank: theory and algorithm. In: Proc. of the 25th ICML, ICML ‘08, pp. 1192–1199. ACM, New York, NY, USA (2008). DOI 10.1145/1390156.1390306. URL http://dx.doi.org/10.1145/1390156.1390306
Xiong, L., Chen, X., Huang, T., J. Schneider, J.G.C.: Temporal collaborative filtering with bayesian probabilistic tensor factorization. In: Proceedings of SIAM Data Mining (2010)
Xu, J., Li, H.: AdaRank: a boosting algorithm for information retrieval. In: Proc. of SIGIR ‘07, SIGIR ‘07, pp. 391–398. ACM, New York, NY, USA (2007). DOI 10.1145/1277741.1277809. URL http://dx.doi.org/10.1145/1277741.1277809
Xu, J., Liu, T.Y., Lu, M., Li, H., Ma, W.Y.: Directly optimizing evaluation measures in learning to rank. In: Proc. of SIGIR ‘08, pp. 107–114. ACM, New York, NY, USA (2008). DOI 10.1145/1390334.1390355. URL http://dx.doi.org/10.1145/1390334.1390355
Y, K., Sill, J.: OrdRec: an ordinal model for predicting personalized item rating distributions. In: RecSys ‘11, pp. 117–124 (2011)
Yang, S., Long, B., Smola, A., Zha, H., Zheng, Z.: Collaborative competitive filtering: learning recommender using context of user choice. In: Proc. of the 34th ACM SIGIR, SIGIR ‘11, pp. 295–304. ACM, New York, NY, USA (2011). DOI 10.1145/2009916.2009959. URL http://dx.doi.org/10.1145/2009916.2009959
Yang, X., Steck, H., Guo, Y., Liu, Y.: On top-k recommendation using social networks. In: Proc. of RecSys ‘12, RecSys ‘12, pp. 67–74. ACM, New York, NY, USA (2012). DOI 10.1145/2365952.2365969. URL http://doi.acm.org/10.1145/2365952.2365969
Yi, J., Chen, Y., Li, J., Sett, S., Yan, T.W.: Predictive model performance: Offline and online evaluations. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ‘13, pp. 1294–1302. ACM, New York, NY, USA (2013). DOI 10.1145/2487575.2488215. URL http://doi.acm.org/10.1145/2487575.2488215
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer Science+Business Media New York
About this chapter
Cite this chapter
Amatriain, X., Basilico, J. (2015). Recommender Systems in Industry: A Netflix Case Study. In: Ricci, F., Rokach, L., Shapira, B. (eds) Recommender Systems Handbook. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7637-6_11
Download citation
DOI: https://doi.org/10.1007/978-1-4899-7637-6_11
Publisher Name: Springer, Boston, MA
Print ISBN: 978-1-4899-7636-9
Online ISBN: 978-1-4899-7637-6
eBook Packages: Computer ScienceComputer Science (R0)