Abstract
We review recent developments in the study of definable relations on the computably enumerable (c.e.) degrees, including the following aspects:
-
(1)
Structure and hierarchies
-
(2)
Definable relations
-
(3)
Continuity in the c.e. degrees
-
(4)
Automorphisms
-
(5)
Defining ε in εn
The author was partially supported by an EPSRC Research Grant, “Turing Definability”, No. GR/M 91419 (UK) and by NSF Grant No. 69973048 and NSF Major Grant No. 19931020 (P. R. CHINA). I am grateful to Barry Cooper for help, encouragement and suggestions during the preparation of this paper. Thanks to Yue Yang for helpful comments on the preliminary draft of the paper.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
K. Ambos-Spies [1984a], On pairs of recursively enumerable degrees, Trans. Amer. Math. Soc. 283 (1984), 507–537.
K. Ambos-Spies [1984b], An extension of the non-diamond theorem in classical and α-recursion theory, J. Symbolic Logic 49, 586–607.
K. Ambos-Spies [1993], Automorphism bases for the recursively enumerable degrees, preprint.
K. Ambos-Spies, C. G. Jockusch, Jr., R. A. Shore and R. I. Soare [1984], An algebraic decomposition of the recursively enumerable degrees and the coincidence of several degree classes with the promptly simple degrees, Trans. Amer. Math. Soc. 281 (1984), 109–128.
K. Ambos-Spies, A. H. Lachlan and R. I. Soare [1993], The continuity of cupping to 0′, Annals of Pure and Applied Logic 64 (1993) 195–209.
M. M. Arslanov [1985], Structural properties of the degrees below 0′, Dokl. Akad. Nauk. SSSR 283, 270–273.
M. M. Arslanov, S. B. Cooper and A. Li [2000], There is no low maximal d.c.e. degree, Math. Log. Quart. 46 (2000) 3, 409–416.
M. M. Arslanov, G. L. LaForte and T. A. Slaman [1998], Relative enumerability in the difference hierarchy, J. Symb. Logic 63, 411–420.
M. Bickford and C. F. Mills, Lowness properties, to appear.
P. Cholak, R. Downey and S. Walk [ta], Maximal contiguous degrees, to appear in J. Symbolic Logic.
P. Cholak, M. Groszek and T. A. Slaman [2001], An almost deep degree, J. Symbolic Logic, 66 (2001), No. 2, 881–901.
S. B. Cooper [1972], Jump equivalence of the \( \Delta_2^0 \) hyperhyperimmune sets, J. Symbolic Logic 37(1972) 598–600.
S. B. Cooper [1974a], Minimal pairs and high recursively enumerable degrees, J. Symbolic Logic 39 (1974), 655–660.
S. B. Cooper [1974b], On a theorem of C.E.M. Yates, handwritten notes, 1974.
S. B. Cooper [1991], The density of the Low2 n-r.e. degrees, Archive for Math. Logic 31, 19–24.
S. B. Cooper [1992], A splitting theorem for the n-r.e. degrees, Proc. Amer. Math. Soc. 115 (2), 461–471.
S. B. Cooper [1997], Beyond Gödel’s theorem- the failure to capture information content, in Complexity, Logic and Recursion Theory (ed. A. Sorbi), Lecture Notes in Pure and Applied Mathematics, Vol. 187, Marcel Dekker, New York, 1997, pp. 93–122.
S. B. Cooper [1999], Local degree theory, in Handbook of Computability Theory (ed. Edward R. Griffor), Studies in Logic, Vol. 140, Amsterdam, Laussanne, New York, Oxford, Shannon, Singapore, Tokyo, 1999.
S. B. Cooper, L. Harrington, A. H. Lachlan, S. Lempp and R. I. Soare [1991], The d-r.e. degrees are not dense, Ann. Pure and Appl. Log. 55 (2), 125–151.
S. B. Cooper, S. Lempp and P. Watson [1989], Week density and cupping in the d-r.e. degrees, Israel J. Math. 67, (1989), 137–152.
S. B. Cooper and A. Li [tal], Splitting and Nonsplitting, I: A low3 Harrington Nonsplitting Base, to appear.
S. B. Cooper and A. Li [ta2], Splitting and Nonsplitting, II: A Low2 c.e. degree above which 0′ is not splittable, to appear.
S. B. Cooper and A. Li [ta3], On Lachlan’s Major Subdegree Problem, to appear.
S. B. Cooper and A. Li [ta4], Non-uniformity and generalised Sacks splitting, to appear in Acta Mathematica Sinica.
S. B. Cooper and A. Li [ta5], Turing definability in the Ershov hierarchy, Journal of London Mathematical Society, to appear.
S. B. Cooper and A. Li [ta6], Splitting and cone avoidance in the d.c.e. degrees, to appear.
S. B. Cooper, A. Li and X. Yi [ta], On the distribution of Lachlan nonsplitting bases, Archive for Mathematical Logic, To appear.
S. B. Cooper and T. A. Slaman [1988], Major subdegrees and cup classes, Recursive Function Theory Newsletter, Item 371, Issue No. 37, February 1988.
S. B. Cooper and X. Yi, Isolated d.r.e. degrees, unpublished.
D. Ding, H. Lu and L. Qian [2000], A splitting with infimum in the d.c.e. degrees, Math. Log. Quart. 46 (2000) 1, 53–76.
D. Ding and L. Yu [ta], To appear.
R. Downey [1989], D.r.e. degrees and the nondiamond theorem, Bull. London Math. Soc. 21, 43–50.
R. G. Downey, S. Lempp and R. A. Shore [1993], Highness and bounding minimal pairs, Math. Logic Quarterly, Vol. 39, pp 475–491.
R. M. Friedberg, Two recursively enumerable sets of incomparable degrees of unsolvability, Proc. Natl. Acad. Sci. SUA 43 (1957), 236–238.
M. B. Giorgi [2001], Continuity properties of degree structures, PhD dissertation, University of Leeds, 2001.
L. Harrington [1976], On Cooper’s proof of a theorem of Yates, Part I, (handwritten notes), 1976.
L. Harrington [1978], Plus cupping in the recursively enumerable degrees (handwritten notes).
L. Harrington [1980], Understanding Lachlan’s monster paper (handwritten notes), 1980.
L. Harrington and R. I. Soare [1989], Games in recursion theory and continuity properties of capping degrees, in Proceedings of the workshop on set theory and the continuum, Oct. 16–20, 1989, Mathematical Sciences Research Institute, Berkeley.
S. Ishmukhametov [1996], Splitting above r.e. degrees, Fundamental Mathematics and Mechanics, 1996, Ulynovsk University Press, Vol. 1, 139–143.
Z. Jiang [1993], Diamond lattice embedded into d.r.e. degrees, Science in China (Series A) 36, 803–811.
C. G. Jockusch, Jr., A. Li and Y. Yang [ta], A join theorem for the computably enumerable degrees, to appear.
C. G. Jockusch and R. A. Shore [1983], Pseudo jump operators I: The R.E. case, Trans. Amer. Math. Soc. 275 (1983), 599–609.
A. H. Lachlan [1966], Lower bounds for pairs of recursively enumerable degrees, Proc. London Math. Soc. 16 (1966), 537–569.
A. H. Lachlan [1968], On the lattice of recursively enumerable sets, Trans. Amer. Math. Soc. 130 (1968), 1–37.
A. H. Lachlan [1975], A recursively enumerable degree which will not split over all lesser ones, Ann. Math. Logic 9 (1975), 307–365.
A. H. Lachlan [1979], Bounding minimal pairs, J. Symbolic Logic 44 (1979), 626–642.
S. Lempp [1988], A high strongly noncappable degree, J. Symbolic Logic.
S. Lempp, A. Nies and T. A. Slaman [1998], The II3-theory of the enumerable Turing degrees is undecidable, Trans. Amer. Math. Soc. 350, 2719–2736.
S. Lempp and T. A. Slaman [1989], A limit on relative genericity in the recursively enumerable sets, J. Symbolic Logic, 54 (1989), No. 2 376–395.
A. Li [2000a], On a Conjecture of Lempp, Archive for Mathematical Logic (2000) 39: 281–309.
A. Li [2000b], Bounding cappable degrees, Archive of Mathematical Logic (2000) 39: 311–352.
A. Li [tal], Elementary differences among jump hierarchies, to appear.
A. Li [ta2], A hierarchy characterisation of cuppable degrees, to appear.
A. Li, T. A. Slaman and Y. Yang [ta], A nonlow2 c.e. degree which bounds no diamond bases, to appear.
A. Li, G. Wu and Z. Zhang [2000], A hierarchy for the cuppable degrees, Illinois Journal of Mathematics, Vol. 44, No. 3, Winter 2000, 619–632.
A. Li and D. Yang [2000], A high diamond theorem, ISSN 1000–9825 Journal of Software, 2000, 11(1): 23–39.
A. Li and X. Yi [1999], Cupping the recursively enumerable degrees by d.r.e. degrees, Proc. London Math. Soc. 78 (3) (1999), 1–21.
D. Miller [1981], High recursively enumerable degrees and the anti-cupping property, in M. Lerman, J. H. Schmerl and R. I. Soare (editors), Logic Year 1979–80: University of Connecticut, Lecture Notes in Mathematics No. 859, Springer-Verlag, Berlin, Heidelberg, Tokyo, New York, 1981, 230–245.
A. A. Muchnik [1956], On the unsolvability of the problem of reducibility in the theory of algorithms, Dokl. Akad. Nauk SSSR, N.S. 108 (1956), 194–197 (Russian).
A. Nies [ta], Model theoretic properties of structures from computability theory, to appear.
A. Nies, R. A. Shore and T. A. Slaman [1998], Interpretability and definability in the recursively enumerable degrees, Proc. London Math. Soc. (3), 77, 241–249.
E. L. Post [1944], Recursively enumerable sets of positive integers and their decision problems, Bull. Amer. Math. Soc. 50 284–316.
P. Odifreddi [1989], Classical Recursion Theory, North-Holland, Amsterdam, New York, Oxford.
R. W. Robinson [1971a], Interpolation and embedding in the recursively enumerable degrees, Ann. of Math. (2) 93 (1971), 285–314.
R. W. Robinson [1971b], Jump restricted interpolation in the recursively enumerable degrees, Ann. of Math. (2) 93 (1971), 586–596.
G. E. Sacks [1963], On the degrees less than 0′, Ann. of Math. (2) 77 (1963), 211–231.
G. E. Sacks [1964], The recursively enumerable degrees are dense, Ann. of Math. (2) 80 (1964), 300–312.
D. Seetapun [1991], Contributions to Recursion Theory, Ph.D. thesis, Trinity College, Cambridge, 1991.
D. Seetapun [1992], Defeating Red, (handwritten notes), 1992.
J. R. Shoenfleld [1965], Application of model theory to degrees of unsolvability, in J. W. Addison, L. Henkin and A. Tarski, Symposium on the theory of models (editors), North-Holland, Amsterdam, 1965.
R. A. Shore [1999], The recursively enumerable degrees, in Handbook of Computability Theory (ed. E. R. Griffor), Amsterdam, Lausanne, New York, Oxford, Shannon, Singapore, Tokyo, 1999, 169–197.
R. A. Shore [2000], Natural definability in degree structures, in M. Lerman, R Cholak, S. Lempp and R. A. Shore, eds., Computability Theory and Its Applications, Contemporary Mathematics Vol. 257, Providence RI, 2000, AMS, 255–271.
R. A. Shore and T. A. Slaman [1990], Working below Low2 recursively enumerable degrees, Archive for Math. Logic, 29 (1990), 201–211.
R. A. Shore and T. A. Slaman [1993], Working below high recursively enumerable degrees, 58, J. Symbolic Logic, 824–859.
T. A. Slaman and R. I. Soare [1995], Algebraic aspects of the recursively enumerable degrees, Proc. Nat. Acad. Sci. USA, 92, (1995), 617–621.
T. A. Slaman and R. I. Soare [2001], Extension of embeddings in the recursively enumerable degrees, Annals of Math., 153: 1–43, 2001.
R. I. Soare [1974], Automorphisms of the lattice of recursively enumerable sets, Bull. Amer. Math. Soc. 80 (1974), 53–58.
R. I. Soare [1987], Recursively Enumerable Sets and Degrees, A study of computable function and computably generated sets, Springer-Verlag Berlin Heidelberg New York London Pairs Tokyo, 1987.
D. Wang [2000], Saturation properties in the computably enumerable degrees, Ph. D. Dissertation, University of Wisconsin, 2000.
C. E. M. Yates [1966], A minimal pair of recursively enumerable degrees, J. Symbolic Logic 31 (1966), 159–168.
Author information
Authors and Affiliations
Rights and permissions
Copyright information
© 2003 Springer Science+Business Media New York
About this chapter
Cite this chapter
Li, A. (2003). Definable Relations on the Computably Enumerable Degrees. In: Computability and Models. The University Series in Mathematics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0755-0_12
Download citation
DOI: https://doi.org/10.1007/978-1-4615-0755-0_12
Publisher Name: Springer, Boston, MA
Print ISBN: 978-1-4613-5225-9
Online ISBN: 978-1-4615-0755-0
eBook Packages: Springer Book Archive