[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Trajectory Indexing and Retrieval

  • Chapter
  • First Online:
Computing with Spatial Trajectories

Abstract

The traveling history of moving objects such as a person, a vehicle, or an animal have been exploited in various applications. The utility of trajectory data depends on the effective and efficient trajectory query processing in trajectory databases. Trajectory queries aim to evaluate spatiotemporal relationships among spatial data objects. In this chapter, we classify trajectory queries into three types, and introduce the various distance measures encountered in trajectory queries. The access methods of trajectories and the basic query processing techniques are presented as another component of this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 43.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 54.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Agrawal, R., Faloutsos, C., Swami, A.N.: Efficient similarity search in sequence databases.FODO pp. 69–84 (1993)

    Google Scholar 

  2. Beckmann, N., Kriefel, H., Schneider, R., Seeger, B.: The r∗ tree: An efficient and robust access method for points and rectangles. In 9th ACM-SIGMOD Symposium n Principles of Database Systems 6(1), 322–331 (1990)

    Google Scholar 

  3. Brinkhoff, T., Kriegel, H.P., Seeger, B.: Efficient processing of spatial joins using r-trees. ACM SIGMOD Conference pp. 237–246 (1993)

    Google Scholar 

  4. Chakka, V.P., Everspaugh, A., Patel, J.M.: Indexing large trajectory data sets with seti. In Proc. of the Conf. on Innovative Data Systems Research(CIDR) (2003)

    Google Scholar 

  5. Chen, L.: Robust and fast similarity search for moving object trajectories. VLDB

    Google Scholar 

  6. Chen, L., Ng, R.: On the marriage of lp-norms and edit distance. In: VLDB, pp. 792–803 (2004)

    Google Scholar 

  7. Chen, L., Ozsu, M.T., Oria, V.: Robust and fast similarity search for moving object trajectories. SIGMOD (2005)

    Google Scholar 

  8. Chen, Z., Shen, H.T., Zhou, X.: Discovering popular routes from trajectories. ICDE (2011)

    Google Scholar 

  9. Chen, Z., Shen, H.T., Zhou, X., Yu, J.X.: Monitoring path nearest neighbor in road networks. SIGMOD (2009)

    Google Scholar 

  10. Chen, Z., Shen, H.T., Zhou, X., Zheng, Y., Xie, X.: Searching trajectories by locations - an efficiency study. SIGMOD (2010)

    Google Scholar 

  11. Frentzos, E., Gratsias, K., Pelekis, N., Theodoridis, Y.: Algorithms for nearest neighbor search on moving object trajectories. Geoinformatica 11(2), 159–193 (2007)

    Article  Google Scholar 

  12. Gonzalez, H., Han, J., Li, X., Myslinska, M., Sondag, J.P.: Adaptive fastest path computation on a road network: a traffic mining approach. VLDB (2007)

    Google Scholar 

  13. Guttman, A.: R-trees: a dynamic index structure for spatial searching. In: Proceedings of the 1984 ACM SIGMOD international conference on Management of data, SIGMOD 84, pp. 47–57. ACM, New York, NY, USA (1984). DOI http://doi.acm.org/10.1145/602259.602266. URL http://doi.acm.org/10.1145/602259.602266

  14. Hjaltason, G.R., Samet, H.: Distance browsing in spatial databases. TODS 24(2), 265–318 (1999)

    Article  Google Scholar 

  15. Huang, Y.W., Jing, N., Rundensteiner, E.A.: Spatial joins using r-trees: Breadth-first traversal with global optimizations. VLDB 24(2), 396–405 (1997)

    Google Scholar 

  16. Jeung, H., Liu, Q., Shen, H.T., Zhou, X.: A hybrid prediction model for moving objects. ICDE (2008)

    Google Scholar 

  17. Jeung, H., Yiu, M.L., Zhou, X., Jensen, C.S., Shen, H.T.: Discovery of convoys in trajectory databases. VLDB (2008)

    Google Scholar 

  18. Lee, J.G., Han, J., Li, X., Gonzalez, H.: Traclass: trajectory classification using hierarchical region-based and trajectory-based clustering. PVLDB 1(1), 1081–1094 (2008)

    Google Scholar 

  19. Lee, J.G., Han, J., Whang, K.Y.: Trajectory clustering: A partition-and-group framework. SIGMOD (2007)

    Google Scholar 

  20. Lee, J.G., Han, J., Whang, K.Y.: Trajectory clustering: a partitionand-group framework. SIGMOD (2007)

    Google Scholar 

  21. Li, X., Han, J., Lee, J.G., Gonzalez, H.: Traffic density-based discovery of hot routes in road networks. SSTD (2007)

    Google Scholar 

  22. Lomet, D., Salzberg, B.: The performance of a multiversion access method. SIGMOD (1990)

    Google Scholar 

  23. Monreale, A., Pinelli, F., Trasarti, R., Giannotti, F.: Wherenext: a location predictor on trajectory pattern mining. SIGKDD (2009)

    Google Scholar 

  24. Nascimento, M., Silva, J.: Towards historical r-trees. In: Proceedings of the 1998 ACM symposium on Applied Computing, pp. 235–240. ACM (1998)

    Google Scholar 

  25. Pfoser, D., Jensen, C., Theodoridis, Y.: Novel approaches to the indexing of moving object trajectories. VLDB (2000)

    Google Scholar 

  26. Pfoser, D., Jensen, C.S., Theodoridis, Y.: Novel approaches in query processing for moving object trajectories. VLDB pp. 395–406 (2000)

    Google Scholar 

  27. Roussopoulos, N., Kelley, S., Vincent, F.: Nearest neighbor queries. In: Acm Sigmod Record, vol. 24, pp. 71–79. ACM (1995)

    Google Scholar 

  28. Sacharidis, D., Patroumpas, K., Terrovitis, M., Kantere, V., Potamias, M., Mouratidis, K., Sellis, T.: On-line discovery of hot motion paths. EDBT (2008)

    Google Scholar 

  29. Shang, S., Deng, K., Xie, K.: Best point detour query in road networks. ACM GIS (2010)

    Google Scholar 

  30. Shekhar, S., Yoo, J.S.: Processing in-route nearest neighbor queries: a comparison of alternative approaches. ACM GIS (2003)

    Google Scholar 

  31. Song, Z., Roussopoulos, N.: Seb-tree: An approach to index continuously moving objects. Proceedings of International Conference of Mobile Data Management (2003)

    Google Scholar 

  32. Tao, Y., Faloutsos, C., Papadias, D., Liu, B.: Prediction and indexing of moving objects with unknown motion patterns. SIGMOD (2004)

    Google Scholar 

  33. Tao, Y., Papadias, D.: Efficient historical r-trees. In: ssdbm, p. 0223. Published by the IEEE Computer Society (2001)

    Google Scholar 

  34. Tao, Y., Papadias, D.: Mv3r-tree: A spatio-temporal access method for timestamp and interval queries. In: VLDB, pp. 431–440 (2001)

    Google Scholar 

  35. Tao, Y., Papadias, D., Shen, Q.: Continuous nearest neighbor search. In: Proceedings of the 28th international conference on Very Large Data Bases, pp. 287–298. VLDB Endowment (2002)

    Google Scholar 

  36. Wang, L., Zheng, Y., Xie, X., Ma,W.Y.: A exible spatio-temporal indexing scheme for largescale gps track retrieval. MDM (2008)

    Google Scholar 

  37. Xu, X., Han, J., Lu, W.: Rt-tree: An improved r-tree indexing structure for temporal spatial databases. In: Int. Symp. on Spatial Data Handling

    Google Scholar 

  38. Yi, B.K., Jagadish, H., Faloutsos, C.: Efficient retrieval of similar time sequences under time warping. ICDE (1998)

    Google Scholar 

  39. Zheng, Y., Zhang, L., Xie, X., Ma, W.Y.: Mining interesting locations and travel sequences from gps trajectories. WWW (2009)

    Google Scholar 

  40. Zhou, P., Zhang, D., Salzberg, B., Cooperman, G., Kollios, G.: Close pair queries in moving object databases. Proceedings of ACM GIS (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke Deng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Deng, K., Xie, K., Zheng, K., Zhou, X. (2011). Trajectory Indexing and Retrieval. In: Zheng, Y., Zhou, X. (eds) Computing with Spatial Trajectories. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1629-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-1629-6_2

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-1628-9

  • Online ISBN: 978-1-4614-1629-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics