[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Nanotechnology and Its Application in Medicine

  • Chapter
  • First Online:
Handbook of Medical and Healthcare Technologies

Abstract

Nanotechnology is a field of science that controls the manipulation of atomic properties so as to make the functional systems and other materials acquire exclusive capabilities [1]. The amazing approach of nanotechnology has been developed within chemical engineering as an explosive response and inevitable consecutive inspiration caused by original development of fullerenes, designed and created by Sir Harry Kroto who was awarded Nobel Prize for his invention of the methodology for engineering and separation of members of fullerene family in1996 [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 103.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 129.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 129.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. R. F. Curl Jr., H. Kroto, E. Autobiography, Nobelprize.org. 13 April, 2013.

    Google Scholar 

  2. Brown and Holme, 2011: Chemistry for engineering students.Edition 2. Print ISBN-13: 978–1439047910.

    Google Scholar 

  3. M.D. Pavlovic: Biomineralization and nanobacteria: at the door of the new concept? MD-Med Data Rev: 1, 2: 21–24, 2009.

    Google Scholar 

  4. A. K. Geim and K. S. Novoselov, “The rise of graphene”, Nature Materials, vol. 6, no. 3, pp. 183–191, 2007.

    Google Scholar 

  5. K. S. Novoselov, A. K. Geim, S. V. Morozov, et al., “Electric field in atomically thin carbon films”, Science, vol. 306, no.5696, pp. 666–669, 2004.

    Google Scholar 

  6. .C. Berger, Z. Song, X. Li, et al., “Electronic confinement and coherence in patterned epitaxial graphene”, Science, vol. 312, no. 5777, pp. 1191–1196, 2006.

    Google Scholar 

  7. Y. Zhang, Y.-W. Tan, H. L. Stormer, and P. Kim, “Experimental observation of the quantum Hall effect and Berry’s phase ingraphene”, Nature, vol. 438, no. 7065, pp. 201–204, 2005.

    Google Scholar 

  8. K. S. Novoselov, A. K. Geim, S. V. Morozov, et al., “Two dimensional gas of massless Dirac fermions in graphene”, Nature, vol. 438, no. 7065, pp. 197–200, 2005.

    Google Scholar 

  9. C. Berger, Z. Song, T. Li, et al., “Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics”, Journal of Physical Chemistry B, vol. 108, no. 52, pp. 19912–19916, 2004.

    Google Scholar 

  10. .Y.-W. Son, M. L. Cohen, and S. G. Louie, “Energy gaps in graphene nanoribbons”, Physical Review Letters, vol. 97, no. 21, Article ID 216803, 4 pages, 2006.

    Google Scholar 

  11. H. Xiang, E. Kan, S.-H. Wei, M.-H. Whangbo, and J. Yang, “Narrow” Graphene Nanoribbons Made Easier by Partial Hydrogenation”, Nano Letters, vol. 9, no. 12, pp. 4025–4030, 2009.

    Google Scholar 

  12. M. Y. Han, B. Özyilmaz, Y. Zhang, and P. Kim, “Energy bandgap engineering of graphene nanoribbons”, Physical Review Letters, vol. 98, no. 20, Article ID 206805, 4 pages, 2007.

    Google Scholar 

  13. D. A. Areshkin, D. Gunlycke, and C. T. White, “Ballistic transport in graphene nanostrips in the presence of disorder: importance of edge effects”, Nano Letters, vol. 7, no. 1, pp. 204–210, 2007.

    Google Scholar 

  14. Zaharah et al, 2010 Z. Chen, Y.-M. Lin, M. J. Rooks, and P. Avouris, “Graphene nano-ribbon electronics”, Physica E, vol. 40, no. 2, Article ID 0701599, pp. 228–232, 2007.

    Google Scholar 

  15. K. Nakada, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus, “Edge state in graphene ribbons: nanometer size effect and edge shape dependence”, Physical Review B, vol. 54, no. 24, pp. 17954–17961, 1996.

    Google Scholar 

  16. V. Barone, O. Hod, and G. E. Scuseria, “Electronic structure and stability of semiconducting graphene nanoribbons”, Nano Letters, vol. 6, no. 12, pp. 2748–2754, 2006.

    Google Scholar 

  17. G. Liang, N. Neophytou, D. E. Nikonov, and M. S. Lundstrom, “Performance projections for ballistic graphene nanoribbon field-effect transistors”, IEEE Transactions on Electron Devices, vol. 54, no. 4, pp. 677–682, 2007.

    Google Scholar 

  18. K. Wakabayashi, “Electronic and Magnetic Properties of Nanographite”, in Carbon-Based Magnetism–n Overview of the Magnetism of Metal Free Carbon-Based Compounds and Materials, pp. 279–304, Elsevier, Amsterdam, The Netherlands, 2006.

    Google Scholar 

  19. Q. Yan, B. Huang, J. Yu, et al., “Intrinsic current-voltage characteristics of graphene nanoribbon transistors and effect of edge doping”, Nano Letters, vol. 7, no. 6, pp. 1469–1473, 2007.

    Google Scholar 

  20. J. W. G. Wildoer, L. C. Venema, A. G. Rinzler, R. E. Smalley, and C. Dekker, “Electronic structure of atomically resolved carbon nanotubes”, Nature, vol. 391, no. 6662, pp. 59–62, 1998.

    Google Scholar 

  21. R. A. Jishi, D. Inomata, K. Nakao, M. S. Dresselhaus, and G. Dresselhaus, “Electronic and lattice properties of carbon nanotubes”, Journal of the Physical Society of Japan, vol. 63, no.6, pp. 2252–2290, 1994.

    Google Scholar 

  22. T. M. Fahmy, P. M. Fong, J. Park, T. Constable, and W. M. Saltzman : Nanosystems for Simultaneous Imaging and Drug Delivery to T Cells. The AAPS Journal 2007; 9 (2) Article 19.

    Google Scholar 

  23. NV Katre. The conjugation of proteins with polyethylene glycol and other polymers altering properties of proteins to enhance their therapeutic potential. Adv Drug Deliv Rev. 1993; 10 : 91–114.

    Google Scholar 

  24. H. Kobayashi, MW Brechbiel : Dendrimer-based nanosized MRI contrast agents. Curr Pharm Biotechnol. 2004; 5 : 539–549.

    Google Scholar 

  25. Kobayashi H, Brechbiel MW. Nano-sized MRI contrast agents with dendrimer cores. Adv Drug Deliv Rev. 2005; 57 : 2271–2286.

    Google Scholar 

  26. JM Anderson, MS Shive. Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv Drug Deliv Rev. 1997; 28: 5–24.

    Google Scholar 

  27. R Langer, J Folkman. Polymers for the sustained release of proteins and other macromolecules. Nature. 1976; 263 : 797–800.

    Google Scholar 

  28. “Name-It: Naming and Detecting Faces in News Videos”, IEEE MultiMedia, Vol. 6, No. 1, January-March (Spring), 1999, pp. 22–35.

    Google Scholar 

  29. Stupp, Roger, et al. “NovoTTF-100A versus physician’s choice chemotherapy in recurrent glioblastoma: a randomised phase III trial of a novel treatment modality.” European Journal of Cancer (2012).

    Google Scholar 

  30. Brannon-Peppas, Lisa, and James O. Blanchette. “Nanoparticle and targeted systems for cancer therapy.” Advanced drug delivery reviews 56.11 (2004): 1649–1659.

    Google Scholar 

  31. Davis, Mark E. “Nanoparticle therapeutics: an emerging treatment modality for cancer.” Nature Reviews Drug Discovery 7.9 (2008): 771–782.

    Google Scholar 

  32. Gagliardi, G., et al. “Long-term cardiac mortality after radiotherapy of breast cancer–application of the relative seriality model.” British journal of radiology 69.825 (1996): 839–846.

    Google Scholar 

  33. Gaitanis, Alexander, and Stephen Staal. “Liposomal doxorubicin and nab-paclitaxel: nanoparticle cancer chemotherapy in current clinical use.” Cancer Nanotechnology. Humana Press, 2010. 385–392.

    Google Scholar 

  34. Gil, Justyna, et al. “Cancer stem cells: the theory and perspectives in cancer therapy.” Journal of applied genetics 49.2 (2008): 193–199.

    Google Scholar 

  35. http://www.bionano.neu.edu/NanoRobotics_in_Medicine.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirjana Pavlovic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pavlovic, M., Mayfield, J., Balint, B. (2013). Nanotechnology and Its Application in Medicine. In: Furht, B., Agarwal, A. (eds) Handbook of Medical and Healthcare Technologies. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8495-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8495-0_7

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8494-3

  • Online ISBN: 978-1-4614-8495-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics