Abstract
Nanotechnology is a field of science that controls the manipulation of atomic properties so as to make the functional systems and other materials acquire exclusive capabilities [1]. The amazing approach of nanotechnology has been developed within chemical engineering as an explosive response and inevitable consecutive inspiration caused by original development of fullerenes, designed and created by Sir Harry Kroto who was awarded Nobel Prize for his invention of the methodology for engineering and separation of members of fullerene family in1996 [1].
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
R. F. Curl Jr., H. Kroto, E. Autobiography, Nobelprize.org. 13 April, 2013.
Brown and Holme, 2011: Chemistry for engineering students.Edition 2. Print ISBN-13: 978–1439047910.
M.D. Pavlovic: Biomineralization and nanobacteria: at the door of the new concept? MD-Med Data Rev: 1, 2: 21–24, 2009.
A. K. Geim and K. S. Novoselov, “The rise of graphene”, Nature Materials, vol. 6, no. 3, pp. 183–191, 2007.
K. S. Novoselov, A. K. Geim, S. V. Morozov, et al., “Electric field in atomically thin carbon films”, Science, vol. 306, no.5696, pp. 666–669, 2004.
.C. Berger, Z. Song, X. Li, et al., “Electronic confinement and coherence in patterned epitaxial graphene”, Science, vol. 312, no. 5777, pp. 1191–1196, 2006.
Y. Zhang, Y.-W. Tan, H. L. Stormer, and P. Kim, “Experimental observation of the quantum Hall effect and Berry’s phase ingraphene”, Nature, vol. 438, no. 7065, pp. 201–204, 2005.
K. S. Novoselov, A. K. Geim, S. V. Morozov, et al., “Two dimensional gas of massless Dirac fermions in graphene”, Nature, vol. 438, no. 7065, pp. 197–200, 2005.
C. Berger, Z. Song, T. Li, et al., “Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics”, Journal of Physical Chemistry B, vol. 108, no. 52, pp. 19912–19916, 2004.
.Y.-W. Son, M. L. Cohen, and S. G. Louie, “Energy gaps in graphene nanoribbons”, Physical Review Letters, vol. 97, no. 21, Article ID 216803, 4 pages, 2006.
H. Xiang, E. Kan, S.-H. Wei, M.-H. Whangbo, and J. Yang, “Narrow” Graphene Nanoribbons Made Easier by Partial Hydrogenation”, Nano Letters, vol. 9, no. 12, pp. 4025–4030, 2009.
M. Y. Han, B. Özyilmaz, Y. Zhang, and P. Kim, “Energy bandgap engineering of graphene nanoribbons”, Physical Review Letters, vol. 98, no. 20, Article ID 206805, 4 pages, 2007.
D. A. Areshkin, D. Gunlycke, and C. T. White, “Ballistic transport in graphene nanostrips in the presence of disorder: importance of edge effects”, Nano Letters, vol. 7, no. 1, pp. 204–210, 2007.
Zaharah et al, 2010 Z. Chen, Y.-M. Lin, M. J. Rooks, and P. Avouris, “Graphene nano-ribbon electronics”, Physica E, vol. 40, no. 2, Article ID 0701599, pp. 228–232, 2007.
K. Nakada, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus, “Edge state in graphene ribbons: nanometer size effect and edge shape dependence”, Physical Review B, vol. 54, no. 24, pp. 17954–17961, 1996.
V. Barone, O. Hod, and G. E. Scuseria, “Electronic structure and stability of semiconducting graphene nanoribbons”, Nano Letters, vol. 6, no. 12, pp. 2748–2754, 2006.
G. Liang, N. Neophytou, D. E. Nikonov, and M. S. Lundstrom, “Performance projections for ballistic graphene nanoribbon field-effect transistors”, IEEE Transactions on Electron Devices, vol. 54, no. 4, pp. 677–682, 2007.
K. Wakabayashi, “Electronic and Magnetic Properties of Nanographite”, in Carbon-Based Magnetism–n Overview of the Magnetism of Metal Free Carbon-Based Compounds and Materials, pp. 279–304, Elsevier, Amsterdam, The Netherlands, 2006.
Q. Yan, B. Huang, J. Yu, et al., “Intrinsic current-voltage characteristics of graphene nanoribbon transistors and effect of edge doping”, Nano Letters, vol. 7, no. 6, pp. 1469–1473, 2007.
J. W. G. Wildoer, L. C. Venema, A. G. Rinzler, R. E. Smalley, and C. Dekker, “Electronic structure of atomically resolved carbon nanotubes”, Nature, vol. 391, no. 6662, pp. 59–62, 1998.
R. A. Jishi, D. Inomata, K. Nakao, M. S. Dresselhaus, and G. Dresselhaus, “Electronic and lattice properties of carbon nanotubes”, Journal of the Physical Society of Japan, vol. 63, no.6, pp. 2252–2290, 1994.
T. M. Fahmy, P. M. Fong, J. Park, T. Constable, and W. M. Saltzman : Nanosystems for Simultaneous Imaging and Drug Delivery to T Cells. The AAPS Journal 2007; 9 (2) Article 19.
NV Katre. The conjugation of proteins with polyethylene glycol and other polymers altering properties of proteins to enhance their therapeutic potential. Adv Drug Deliv Rev. 1993; 10 : 91–114.
H. Kobayashi, MW Brechbiel : Dendrimer-based nanosized MRI contrast agents. Curr Pharm Biotechnol. 2004; 5 : 539–549.
Kobayashi H, Brechbiel MW. Nano-sized MRI contrast agents with dendrimer cores. Adv Drug Deliv Rev. 2005; 57 : 2271–2286.
JM Anderson, MS Shive. Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv Drug Deliv Rev. 1997; 28: 5–24.
R Langer, J Folkman. Polymers for the sustained release of proteins and other macromolecules. Nature. 1976; 263 : 797–800.
“Name-It: Naming and Detecting Faces in News Videos”, IEEE MultiMedia, Vol. 6, No. 1, January-March (Spring), 1999, pp. 22–35.
Stupp, Roger, et al. “NovoTTF-100A versus physician’s choice chemotherapy in recurrent glioblastoma: a randomised phase III trial of a novel treatment modality.” European Journal of Cancer (2012).
Brannon-Peppas, Lisa, and James O. Blanchette. “Nanoparticle and targeted systems for cancer therapy.” Advanced drug delivery reviews 56.11 (2004): 1649–1659.
Davis, Mark E. “Nanoparticle therapeutics: an emerging treatment modality for cancer.” Nature Reviews Drug Discovery 7.9 (2008): 771–782.
Gagliardi, G., et al. “Long-term cardiac mortality after radiotherapy of breast cancer–application of the relative seriality model.” British journal of radiology 69.825 (1996): 839–846.
Gaitanis, Alexander, and Stephen Staal. “Liposomal doxorubicin and nab-paclitaxel: nanoparticle cancer chemotherapy in current clinical use.” Cancer Nanotechnology. Humana Press, 2010. 385–392.
Gil, Justyna, et al. “Cancer stem cells: the theory and perspectives in cancer therapy.” Journal of applied genetics 49.2 (2008): 193–199.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer Science+Business Media New York
About this chapter
Cite this chapter
Pavlovic, M., Mayfield, J., Balint, B. (2013). Nanotechnology and Its Application in Medicine. In: Furht, B., Agarwal, A. (eds) Handbook of Medical and Healthcare Technologies. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8495-0_7
Download citation
DOI: https://doi.org/10.1007/978-1-4614-8495-0_7
Published:
Publisher Name: Springer, New York, NY
Print ISBN: 978-1-4614-8494-3
Online ISBN: 978-1-4614-8495-0
eBook Packages: Computer ScienceComputer Science (R0)