Definition
The basal ganglia (BG) system is a deep brain circuit with wide-ranging brain functions. Exploration refers to the sampling of a variety of behaviors not firmly established within a learned repertoire. While the neural source of variability driving exploration within the subcortex has not been identified, the hypothesis that the indirect pathway of the BG is the subcortical substrate for exploration leads to explanations for how a range of putative BG functions might be performed.
Detailed Description
Reinforcement Learning and the Basal Ganglia
For nearly a century, a certain “mysteriousness” has been attributed to the function of the basal ganglia (BG) system – a deep brain circuit of multiple interconnected nuclei, with rich connections to large parts of the cortex (Kinnier Wilson in his Croonian lectures in 1925, Marsden 1982). The mystique surrounding BG has its roots perhaps in the multifarious functions of this circuit. Action selection, action gating, sequence...
References
Albin RL, Young AB et al (1989) The functional anatomy of basal ganglia disorders. Trends Neurosci 12(10):366–375
Alexander GE, Crutcher MD (1990) Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci 13(7):266–271
Baunez C, Humby T et al (2001) Effects of STN lesions on simple vs choice reaction time tasks in the rat: preserved motor readiness, but impaired response selection. Eur J Neurosci 13(8):1609–1616
Bergman H, Wichmann T et al (1994) The primate subthalamic nucleus. II. Neuronal activity in the MPTP model of parkinsonism. J Neurophysiol 72(2):507–520
Brown P, Oliviero A et al (2001) Dopamine dependency of oscillations between subthalamic nucleus and pallidum in Parkinson’s disease. J Neurosci 21(3):1033–1038
Brunel N (2000) Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons. J Comput Neurosci 8(3):183–208
Chakravarthy VS (2013) Do basal ganglia amplify willed action by stochastic resonance? A model. PLoS One 8(11):e75657
Chakravarthy VS, Joseph D et al (2010) What do the basal ganglia do? A modeling perspective. Biol Cybern 103(3):237–253
Contreras-Vidal J, Stelmach GE (1995) Effects of Parkinsonism on motor control. Life Sci 58(3):165–176
Cowie D, Limousin P et al (2010) Insights into the neural control of locomotion from walking through doorways in Parkinson’s disease. Neuropsychologia 48(9):2750–2757
Daw ND, O’Doherty JP et al (2006) Cortical substrates for exploratory decisions in humans. Nature 441(7095):876–879
DeLong MR (1990) Primate models of movement disorders of basal ganglia origin. Trends Neurosci 13(7):281–285
Devan BD, White NM (1999) Parallel information processing in the dorsal striatum: relation to hippocampal function. J Neurosci 19(7):2789–2798
Doya K (2002) Metalearning and neuromodulation. Neural Netw 15(4–6):495–506
Gillies A, Willshaw D et al (2002) Functional interactions within the subthalamic nucleus. The basal ganglia VII. Springer, New York. pp 359–368
Grabli D, McCairn K et al (2004) Behavioural disorders induced by external globus pallidus dysfunction in primates: I. Behavioural study. Brain 127(9):2039–2054
Gupta A, Balasubramani PP et al (2013) Computational model of precision grip in Parkinson’s disease: a utility based approach. Front Comput Neurosci 7:172
Gurney K, Prescott TJ et al (2001) A computational model of action selection in the basal ganglia. I. A new functional anatomy. Biol Cybern 84(6):401–410
Hollerman JR, Schultz W (1998) Dopamine neurons report an error in the temporal prediction of reward during learning. Nat Neurosci 1(4):304–309
Houk JC, Davis JL et al (1995) Models of information processing in the basal ganglia. The MIT press, Cambridge, MA
Humphries M, Gurney K (2002) The role of intra-thalamic and thalamocortical circuits in action selection. Netw Comput Neural Syst 13(1):131–156
Humphries MD, Prescott TJ (2010) The ventral basal ganglia, a selection mechanism at the crossroads of space, strategy, and reward. Prog Neurobiol 90(4):385–417
Hurtado JM, Gray CM et al (1999) Dynamics of tremor-related oscillations in the human globus pallidus: a single case study. Proc Natl Acad Sci 96(4):1674–1679
Joel D, Niv Y et al (2002) Actor-critic models of the basal ganglia: new anatomical and computational perspectives. Neural Netw 15(4–6):535–547
Kalva SK, Rengaswamy M et al (2012) On the neural substrates for exploratory dynamics in basal ganglia: a model. Neural Netw 32:65–73
Kirkpatrick S, Gelatt CD Jr et al (1983) Optimization by simulated annealing. Science 220(4598):671–680
Kliem MA, Maidment NT et al (2007) Activation of nigral and pallidal dopamine D1-like receptors modulates basal ganglia outflow in monkeys. J Neurophysiol 98(3):1489–1500
Knutson B, Adams CM et al (2001) Anticipation of increasing monetary reward selectively recruits nucleus accumbens. J Neurosci 21(16):RC159
Kravitz AV, Freeze BS et al (2010) Regulation of Parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry. Nature 466(7306):622–626
Krishnan R, Ratnadurai S et al (2011) Modeling the role of basal ganglia in saccade generation: is the indirect pathway the explorer? Neural Netw 24(8):801–813
Magdoom KN, Subramanian D et al (2011) Modeling basal ganglia for understanding Parkinsonian reaching movements. Neural Comput 23(2):477–516
Magill P, Bolam J et al (2001) Dopamine regulates the impact of the cerebral cortex on the subthalamic nucleus–globus pallidus network. Neuroscience 106(2):313–330
Marsden C (1982) The mysterious motor function of the basal ganglia: the Robert Wartenberg lecture. Neurology 32:514–539
Mink JW (2003) The basal ganglia and involuntary movements: impaired inhibition of competing motor patterns. Arc Neurol 60(10):1365
Miyoshi E, Wietzikoski S et al (2002) Impaired learning in a spatial working memory version and in a cued version of the water maze in rats with MPTP-induced mesencephalic dopaminergic lesions. Brain Res Bull 58(1):41–47
Muralidharan V, Balasubramani PP et al (2013) A computational model of altered gait patterns in parkinson’s disease patients negotiating narrow doorways. Front Comput Neurosci 7:190
O’Doherty J, Dayan P et al (2004) Dissociable roles of ventral and dorsal striatum in instrumental conditioning. Science 304(5669):452–454
Plenz D, Kital ST (1999) A basal ganglia pacemaker formed by the subthalamic nucleus and external globus pallidus. Nature 400(6745):677–682
Priyadharsini BP, Ravindran B et al (2012) Understanding the role of serotonin in basal ganglia through a unified model. Artificial neural networks and machine learning–ICANN 2012, Springer, Berlin, pp 467–473
Redgrave P, Prescott TJ et al (1999) The basal ganglia: a vertebrate solution to the selection problem? Neuroscience 89(4):1009–1023
Ring H, Serra-Mestres J (2002) Neuropsychiatry of the basal ganglia. J Neurol Neurosurg Psychiatry 72(1):12–21
Rushworth MF, Behrens TE (2008) Choice, uncertainty and value in prefrontal and cingulate cortex. Nat Neurosci 11(4):389–397
Russell V, Allin R et al (1992) Regional distribution of monoamines and dopamine D1-and D2-receptors in the striatum of the rat. Neurochem Res 17(4):387–395
Schultz W, Dayan P et al (1997) A neural substrate of prediction and reward. Science 275(5306):1593–1599
Sridharan D, Prashanth PS et al (2006) The role of the basal ganglia in exploration in a neural model based on reinforcement learning. Int J Neural Syst 16(2):111–124
Stein PS, Grillner S et al (1997) Neurons, networks, and behavior. MIT Press, Cambridge, MA
Steiner H, Tseng KY (2010) Handbook of basal ganglia structure and function: a decade of progress. Access online via Elsevier. Academic press, San Diego
Sukumar D, Rengaswamy M et al (2012) Modeling the contributions of basal ganglia and hippocampus to spatial navigation using reinforcement learning. PLoS One 7(10):e47467
Sutton R, Barto A (1998) Reinforcement learning: an introduction. Adaptive computations and machine learning. MIT Press/Bradford, Cambridge, MA
Terman D, Rubin J et al (2002) Activity patterns in a model for the subthalamopallidal network of the basal ganglia. J Neurosci 22(7):2963–2976
Usher M, Cohen JD et al (1999) The role of locus coeruleus in the regulation of cognitive performance. Science 283(5401):549–554
Willshaw D, Li Z (2002) Subthalamic–pallidal interactions are critical in determining normal and abnormal functioning of the basal ganglia. Proc R Soc Lond Ser B Biol Sci 269(1491):545–551
Yoshida W, Ishii S (2006) Resolution of uncertainty in prefrontal cortex. Neuron 50(5):781–789
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer Science+Business Media New York
About this entry
Cite this entry
Chakravarthy, V.S., Balasubramani, P.P. (2014). Basal Ganglia System as an Engine for Exploration. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_81-1
Download citation
DOI: https://doi.org/10.1007/978-1-4614-7320-6_81-1
Received:
Accepted:
Published:
Publisher Name: Springer, New York, NY
Online ISBN: 978-1-4614-7320-6
eBook Packages: Living Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences