[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Recommender Systems, Semantic-Based

  • Reference work entry
  • First Online:
Encyclopedia of Social Network Analysis and Mining
  • 331 Accesses

Synonyms

Social Recommender System; Tag-based recommendation; Web 2.0 recommender systems

Glossary

Collaborative Filtering :

A recommendation method which is based on rating information of the user community

Content-Based Filtering :

A recommendation method which is based on characteristics of the recommended items as well as individual user feedback

Hybrid Recommender System :

A recommender system that combines different recommendation approaches or data sources

Rating Matrix :

A grid containing the users’ implicit or explicit item ratings

Cold-Start Problem :

The ramp-up phase of a recommender where preference data is missing

Definition

Recommender systems (RS) are software tools that are predominantly used on e-commerce sites and for other online services as a means to help the online customer find the most relevant shopping items or pieces of information quickly. Today, such systems can be found for a variety of different domains such as books, movies, music, hotels, restaurants,...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 963.90
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
GBP 963.90
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Cantador I, Bellogin A, Vallet D (2010) Content-based recommendation in social tagging systems. In: Rec-Sys’10, Barcelona, pp 237–240

    Google Scholar 

  • Cattuto C, Benz D, Hotho A, Stumme G (2008) Semantic grounding of tag relatedness in social bookmarking systems. In: ISWC’08, Karlsruhe, pp 615–631

    Google Scholar 

  • de Gemmis M, Lops P, Semeraro G, Basile P (2008) Integrating tags in a semantic content-based recommender. In: RecSys’08, Lausanne, pp 163–170

    Google Scholar 

  • Durao F, Dolog P (2010) Extending a hybrid tag-based recommender system with personalization. In: SAC’10, Sierre, pp 1723–1727

    Google Scholar 

  • Firan CS, Nejdl W, Paiu R (2007) The benefit of using tag-based profiles. In: LA-WEB’07, Santiago de Chile, pp 32–41

    Google Scholar 

  • Gedikli F, Jannach D (2013) Improving recommendation accuracy based on item-specific tag preferences. ACM Trans Intell Syst Technol 4(1):1–19

    Google Scholar 

  • Gedikli F, Ge M, Jannach D (2011) Understanding recommendations by reading the clouds. In: EC-Web’11, Toulouse, pp 196–208

    Google Scholar 

  • Golder SA, Huberman BA (2006) Usage patterns of collaborative tagging systems. J Inf Sci 32(2):198–208

    Google Scholar 

  • Hotho A, Jäschke R, Schmitz C, Stumme G (2006) Information retrieval in folksonomies: search and ranking. In: ESWC’06, Budva, pp 411–426

    Google Scholar 

  • http://vanderwal.net/folksonomy.html

  • http://www.delicious.com

  • http://www.flickr.com

  • Jannach D, Zanker M, Felfernig A, Friedrich G (2010) Recommender systems – an introduction. Cambridge University Press, Leiden

    Google Scholar 

  • Ji A-T, Yeon C, Kim H-N, Jo G-S (2007) Collaborative tagging in recommender systems. In: AUS-AI’07, Gold Coast, pp 377–386

    Google Scholar 

  • Kubatz M, Gedikli F, Jannach D (2011) LocalRank – neighborhood-based, fast computation of tag recommendations. In: EC-Web’11, Toulouse, pp 258–269

    Google Scholar 

  • Li X, Guo L, Zhao YE (2008) Tag-based social interest discovery. In: WWW’08, Beijing, pp 675–684

    Google Scholar 

  • Liang H, Xu Y, Li Y (2012) Mining users’ opinions based on item folksonomy and taxonomy for personalized recommender systems. In: ICDM’10, Sydney

    Google Scholar 

  • Linden G, Smith B, York J (2003) Amazon.com recommendations: item-to-item collaborative filtering. IEEE Internet Comput 7(1):76–80

    Google Scholar 

  • Noll MG, Meinel C (2007) Web search personalization via social bookmarking and tagging. In: ISWC’07/ASWC’07, Busan, pp 367–380

    Google Scholar 

  • Passant A (2007) Using ontologies to strengthen folk-sonomies and enrich information retrieval in weblogs. In: ICWSM’07, Boulder

    Google Scholar 

  • Pitkow J, Schütze H, Cass T, Cooley R, Turnbull D, Edmonds A, Adar E, Breuel T (2002) Personalized search. Commun ACM 45(9):50–55

    Google Scholar 

  • Rendle S, Schmidt-Thieme L (2010) Pairwise interaction tensor factorization for personalized tag recommendation. In: WSDM’10, New York, pp 81–90

    Google Scholar 

  • Rendle S, Balby Marinho L, Nanopoulos A, Lars S-T (2009) Learning optimal ranking with tensor factorization for tag recommendation. In: SIGKDD’09, Paris, pp 727–736

    Google Scholar 

  • Sen S, Vig J, Riedl JT (2009) Tagommenders: connecting users to items through tags. In: WWW’09, Madrid, pp 671–680

    Google Scholar 

  • Seth A, Zhang J (2008) A social network based approach to personalized recommendation of participatory media content. In: ICWSM’08, Seattle

    Google Scholar 

  • Shepitsen A, Gemmell J, Mobasher B, Burke R (2008) Personalized recommendation in social tagging systems using hierarchical clustering. In: RecSys’08, Lausanne, pp 259–266

    Google Scholar 

  • Symeonidis P, Nanopoulos A, Manolopoulos Y (2008) Tag recommendations based on tensor dimensionality reduction. In: RecSys’08, Lausanne, pp 43–50

    Google Scholar 

  • Tso-Sutter KHL, Marinho LB, Schmidt-Thieme L (2008) Tag-aware recommender systems by fusion of collaborative filtering algorithms. In: SAC’08, Fortaleza, pp 1995–1999

    Google Scholar 

  • Vatturi PK, Geyer W, Dugan C, Muller M, Brownholtz B (2008) Tag-based filtering for personalized bookmark recommendations. In: CIKM’08, Napa Valley, pp 1395–1396

    Google Scholar 

  • Vig J, Sen S, Riedl JT (2009) Tagsplanations: explaining recommendations using tags. In: IUI’09, Sanibel Island, pp 47–56

    Google Scholar 

  • Vig J, Soukup M, Sen S, Riedl JT (2010) Tag expression: tagging with feeling. In: UIST’10, New York, pp 323–332

    Google Scholar 

  • Xu G, Gu Y, Dolog P, Zhang Y, Kitsuregawa M (2011a) Semrec: A semantic enhancement framework for tag based recommendation. In: AAAI’11, San Francisco, pp 1267–1272

    Google Scholar 

  • Xu G, Gu Y, Zhang Y, Yang Z, Kitsuregawa M (2011b) Toast: a topic-oriented tag-based recommender system. In: WISE’11, Sydney, pp 158–171

    Google Scholar 

  • Zanardi V, Capra L (2011) A scalable tag-based recommender system for new users of the Social Web. In: DEXA’11, Toulouse, pp 542–557

    Google Scholar 

  • Zhen Y, Li W-J, Yeung D-Y (2009) Tagicofi: tag informed collaborative filtering. In: RecSys’09, New York, pp 69–76

    Google Scholar 

Recommended Reading

  • Jannach D, Zanker M, Felfernig A, Friedrich G (2010) Recommender systems – an introduction. Cambridge University Press, Leiden

    Google Scholar 

  • Ricci F, Rokach L, Shapira B, Kantor PB (eds) (2011) Recommender systems handbook. Springer, New York

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Gedikli, F., Jannach, D. (2014). Recommender Systems, Semantic-Based. In: Alhajj, R., Rokne, J. (eds) Encyclopedia of Social Network Analysis and Mining. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6170-8_116

Download citation

Publish with us

Policies and ethics