[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Can Relational DBMS Scale Up to the Cloud?

  • Conference paper
  • First Online:
Information Systems Development

Abstract

Dominance of relational DBMS technology is being challenged by rapidly advancing requirements of new types of applications that need to manage massive amounts of complex data. The latest challenge is to provide effective data management for cloud computing environments. A number of non-relational data stores have been implemented and deployed to run over thousands of commodity servers and to process petabytes of data. Proponents of the NoSQL movement argue that relational databases are being superseded by more advanced database technology designed to take advantage of cloud infrastructure. In this chapter, we give a balanced discussion of the relative advantages and drawbacks of RDBMS systems and NoSQL data stores and describe research efforts to extend the relational databases so that they can operate effectively on cloud infrastructure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 199.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 249.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 249.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.oracle.com/us/products/database/index.html

  2. 2.

    http://www-01.ibm.com/software/data/db2/

  3. 3.

    http://www.vertica.com/

  4. 4.

    http://www.google.com/base/

  5. 5.

    http://hypertable.org

  6. 6.

    http://aws.amazon.com/s3/

  7. 7.

    http://aws.amazon.com/simpledb/

  8. 8.

    http://cassandra.apache.org

  9. 9.

    http://code.google.com/p/redis

  10. 10.

    http://www.mongodb.org

  11. 11.

    http://project-voldemort.com

  12. 12.

    http://couchdb.apache.org

  13. 13.

    www.salesforce.com

  14. 14.

    http://www.database.com/

References

  • Abadi DJ, Boncz PA, Harizopoulos S (2009) Column-oriented database systems. Proc VLDB Endow 2(2):1664–1665

    Google Scholar 

  • Agrawal R et al (2009) The Claremont report on database research. Commun ACM 52(6):56–65

    Article  Google Scholar 

  • Armbrust M et al (2009) Above the clouds: a Berkeley view of cloud computing. EECS Department, University of California, Berkeley, Technical report. UCB/EECS-2009-28

    Google Scholar 

  • Atkinson M et al (1989) The object-oriented database system manifesto, Citeseer

    Google Scholar 

  • Brantner M et al (2008) Building a database on S3. SIGMOD ‘08. ACM, Vancouver

    Google Scholar 

  • Brewer EA (2000) Towards robust distributed systems. ACM PODC conference.

    Google Scholar 

  • Částková Z, Pokorný J (2010) Schema-less XML in columns. In: 22nd Australasian database conference (ADC 2011), Perth, Australia

    Google Scholar 

  • Ceri S, Pelagatti G (1984) Distributed databases principles and systems. McGraw-Hill computer science series 1984. McGraw-Hill, New York. 0-07-010829-3

    Google Scholar 

  • Chang F et al (2006) Bigtable: a distributed storage system for structured data. OSDI ‘06

    Google Scholar 

  • Codd EF (1970) A relational model of data for large shared data banks. Commun ACM 13(6):377–387

    Article  MATH  Google Scholar 

  • Codd EF (1971) Normalized data structure: a brief tutorial. ACM-SIGFIDET workshop on data description, access and control. ACM, San Diego

    Google Scholar 

  • Colliat G (1996) OLAP, relational, and multidimensional database systems. ACM SIGMOD Rec 25(3):64–69

    Article  Google Scholar 

  • Cooper BF et al (2008) PNUTS: Yahoo!’s hosted data serving platform. Proc VLDB Endow 1(2):1277–1288

    Google Scholar 

  • Das S et al (2010) Elastras: an elastic, scalable, and self managing transactional database for the cloud. UCSB computer science technical report 2010-04. UCSB. http://www.cs.ucsb.edu/~sudipto/tech_reports/2010-04.pdf

  • Dean J, Ghemawat S (2008) MapReduce: simplified data processing on large clusters. Commun ACM 51(1):107–113

    Article  Google Scholar 

  • Eisenberg A, Melton J (1999) SQL: 1999, formerly known as SQL3. ACM SIGMOD Rec 28(1):138

    Article  Google Scholar 

  • Eisenberg A et al (2004) SQL: 2003 has been published. ACM SIGMOD Rec 33(1):119–126

    Article  Google Scholar 

  • Feuerlicht G (2010) Database trends and directions: current challenges and opportunities. DATASO 2010. Matfyzpress, Štědronín, Czech Republic

    Google Scholar 

  • Fitzpatrick B (2004) Distributed caching with memcached. Linux J 2004(124), p 5

    Google Scholar 

  • Gilbert S, Lynch N (2002) Brewer’s conjecture and the feasibility of consistent, available, partition-tolerant web services. ACM SIGACT News 33(2):51–59

    Article  Google Scholar 

  • Intel (2011) Moore’s Law [cited 4 April 2011]. Available from: http://www.intel.com/about/companyinfo/museum/exhibits/moore.htm

  • Lakshman A et al (2010) Cassadra [cited 04-04-2011]. Available from: http://www.slideshare.net/jhammerb/data-presentations-cassandra-sigmod/

  • Maia F et al (2010) Scalable transactions in the cloud: partitioning revisited. On the move to meaningful internet systems, OTM 2010, pp 785–797

    Google Scholar 

  • Melton J (2002) Advanced SQL 1999: understanding object-relational, and other advanced features. Elsevier Science Inc, New York, p 592

    Google Scholar 

  • Ousterhout J et al (2010) The case for RAMClouds: scalable high-performance storage entirely in DRAM. ACM SIGOPS Oper Syst Rev 43(4):92–105

    Article  Google Scholar 

  • Pokorný J (2010) Databases in the 3rd millennium: trends and research directions. J Syst Integr 1(1–2)

    Google Scholar 

  • Pritchett D (2008) Base: an acid alternative. Queue 6(3):48–55

    Article  Google Scholar 

  • Rothschild J (2009) High performance at massive scale – lessons learned at Facebook. CNS 2009 lecture series archives 2009 [cited 15 March 2010; Centre for Networked Systems Lecture]. Available from: http://cns.ucsd.edu/lecturearchive09.shtml

  • Schöning H (2001) Tamino-a DBMS designed for XML. IEEE Computer Society

    Google Scholar 

  • Stonebraker M (2010) Errors in database systems. Eventual consistency, and the CAP Theorem. http://cacm.acm.org/blogs/blog-cacm/83396-errors-in-database-systems-eventual-consistency-and-the-cap-theorem/fulltext

  • Stonebraker M, Cetintemel U (2005) One size fits all: an idea whose time has come and gone. IEEE. 0769522858

    Google Scholar 

  • Stonebraker M et al (1990) Third-generation database system manifesto. SIGMOD Rec 19(3):31–44

    Article  Google Scholar 

  • Stonebraker M et al (2005) C-store: a column-oriented DBMS. VLDB Endowment. 1595931546

    Google Scholar 

  • Stonebraker M et al (2007) One size fits all? Part 2: Benchmarking results. In: Third biennial conference on innovative data systems research (CIDR), California, USA

    Google Scholar 

  • Widom J. Data management for XML: research directions. Bulletin of the Technical Committee on: p 44

    Google Scholar 

Download references

Acknowledgement

This research has been partially supported by grants GACR no. P202/10/0761 and GACR no. P403/11/0574.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Feuerlicht .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this paper

Cite this paper

Feuerlicht, G., Pokorný, J. (2013). Can Relational DBMS Scale Up to the Cloud?. In: Pooley, R., Coady, J., Schneider, C., Linger, H., Barry, C., Lang, M. (eds) Information Systems Development. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4951-5_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-4951-5_26

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-4950-8

  • Online ISBN: 978-1-4614-4951-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics