[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Computer Algebra in the Theory of Ordinary Differential Equations of Halphen Type

  • Conference paper
Computers and Mathematics

Abstract

We present an algorithm for solving linear differential equations in spectral parameter of Halphen type. The integrability condition of the pair of equations of Halphen type gives the large family of nonlinear differential equations of Lax-Novikov type. This algorithm is implemented on the basis of the computer algebra system REDUCE.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Halphen G.H.Memotre sur la reduction des equations differentiellea linealrea oux formes integraZea.Mem.pres.l’Acad des Sci. de Prance,1884,28,No.1 ,p.1.

    Google Scholar 

  2. Whittaker E.T.,Watson G.N.A courae of modern analysis.Cambridge, Cambridge University Press,1973.

    Google Scholar 

  3. Bercovich L.M.Canonical forms of ordinary differential equat ions.Arc.Math. (Brno,CSSR),1988,24,No.1,p.25.

    Google Scholar 

  4. Bercovich L.M.Absolute invariant a and Korteweg de Vries equation. In: Group theoretical methods in physics, Proc. of the tMrd seminar (Yurmala,1985),Moscow,Naul£a,1986(in Russian).

    Google Scholar 

  5. Kamke E.Differentialgleichuhgen:I/)sijmgamethoden und Losungen. Chelsea Publisliing Co.,New York, 1959.

    Google Scholar 

  6. Burclmall J.L.,Chaundy T.W.Commutative ordinary differential equations.Proc.London Math.Soc.,1923,21 ,p.420.

    Article  Google Scholar 

  7. Novikov S.P.The periodic problem for the Korteweg de Vriea equation.Funct.Anal.& Appl.,1975,8,p.236(in Russian).

    Article  Google Scholar 

  8. Lax ;P.Periodic aolution of the KdV equat ion. Comm.Pure & Appl. Math.,1975,28,p.141.

    Article  MATH  MathSciNet  Google Scholar 

  9. Krichever I.M.me method of algebraic geometry in the theory of nonlinear eguationS.Usp.Mat.Nauk,1977,32,p.185(in Russian). Russian).

    MATH  Google Scholar 

  10. Chudnovslsy D.V.The generalized Rieman-Hilbert problem and the spectral interpretat ion. In:Nonlinear Evolution Equations and Dynamical Systems.Leet.Notes in Phys.,120,Springer,New York, 1980.

    Google Scholar 

  11. McKean H.P.,van Moerbeke P.27The spectrum of Hill’s equation. Invent.Math.,1975,30,p.217.

    Article  MATH  MathSciNet  Google Scholar 

  12. Airault H.,McKean H.P.,Moser J.Rational and elliptic solutions of the KdV equation and a related many-body problem.Comm.Pure & Appl-Math.,1977,30,95.

    Article  MATH  MathSciNet  Google Scholar 

  13. Verdler J.L.New elliptic solitone.Preprint, 1987,Paris.

    Google Scholar 

  14. Hermite c.Oeuvres.Vol.3,Paris,Gauthier-Villars, 1912.

    MATH  Google Scholar 

  15. Krichever I.M.Elliptic solutions of Kadomtsev-Petvloshvlll equation and Integrdble particle systems.Funct.Anal.& Appl., 1980,14,p.45(in Russian).

    MATH  MathSciNet  Google Scholar 

  16. Dubrovin B.A.,Matveev V.B.,Novikov S.P.Non-linear equations equations of Kdv type, finite-zone linear operators and dbellan varteties.Russ.Math.Surveys,1976,31 ,p.59.

    Article  MATH  MathSciNet  Google Scholar 

  17. Belokolos E.D.,Enols’kii V.Z.,Bobenko A.I.,Matveev Y.B. Algebro-geometrical principles of superposition of finite-gap solutions of Integrable nonlinear egtiations.Usp.Mat.Nauk, 1986,41,3

    MathSciNet  Google Scholar 

  18. Belokolos E.D.,Enol’skii V.Z.Reduction of theta-functions and Humbert finite-gap potentials of Lame, Trelblch-Verdler, etc.Freprint IMP-88-051988,Kiev,1988.

    Google Scholar 

  19. Duistermaat J.J.,Grunbaum F.A.Differential equations in spectral parameter.Comm.Math.Fhys., 1986,103,p. 177.

    Article  MATH  MathSciNet  Google Scholar 

  20. Chudnovsky D.V.,Ghudnovsky G.V.Remark on the nature of the spectrum of Lome eguation.Lett.Nuovo Cim.,1980,29,p.545.

    Article  Google Scholar 

  21. Ghudnovsky D.V.,Ghudnovsky G.V.Applications of Pade appoximation to the Grothendieck conjecture on linear differential equations.Lect.Notes in Math..,vol.1135,Number theory, Springer, 1986.

    Google Scholar 

  22. Moses J.Solution of a system of pollnomlal equations by elimination.Gonm.AuM,1966,9,p.634.

    MATH  Google Scholar 

  23. Buchberger B.Groebrver basis: a method in the symbolic mathematics. in:Progress, directions and open problems in multididimensional system theory (ed. Bose N.K.),Dordrecht,Reidel, 1985,p.184.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag New York Inc.

About this paper

Cite this paper

Gerdt, V.F., Kostov, N.A. (1989). Computer Algebra in the Theory of Ordinary Differential Equations of Halphen Type. In: Kaltofen, E., Watt, S.M. (eds) Computers and Mathematics. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-9647-5_32

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-9647-5_32

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-97019-6

  • Online ISBN: 978-1-4613-9647-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics