Abstract
We present an algorithm for solving linear differential equations in spectral parameter of Halphen type. The integrability condition of the pair of equations of Halphen type gives the large family of nonlinear differential equations of Lax-Novikov type. This algorithm is implemented on the basis of the computer algebra system REDUCE.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Halphen G.H.Memotre sur la reduction des equations differentiellea linealrea oux formes integraZea.Mem.pres.l’Acad des Sci. de Prance,1884,28,No.1 ,p.1.
Whittaker E.T.,Watson G.N.A courae of modern analysis.Cambridge, Cambridge University Press,1973.
Bercovich L.M.Canonical forms of ordinary differential equat ions.Arc.Math. (Brno,CSSR),1988,24,No.1,p.25.
Bercovich L.M.Absolute invariant a and Korteweg de Vries equation. In: Group theoretical methods in physics, Proc. of the tMrd seminar (Yurmala,1985),Moscow,Naul£a,1986(in Russian).
Kamke E.Differentialgleichuhgen:I/)sijmgamethoden und Losungen. Chelsea Publisliing Co.,New York, 1959.
Burclmall J.L.,Chaundy T.W.Commutative ordinary differential equations.Proc.London Math.Soc.,1923,21 ,p.420.
Novikov S.P.The periodic problem for the Korteweg de Vriea equation.Funct.Anal.& Appl.,1975,8,p.236(in Russian).
Lax ;P.Periodic aolution of the KdV equat ion. Comm.Pure & Appl. Math.,1975,28,p.141.
Krichever I.M.me method of algebraic geometry in the theory of nonlinear eguationS.Usp.Mat.Nauk,1977,32,p.185(in Russian). Russian).
Chudnovslsy D.V.The generalized Rieman-Hilbert problem and the spectral interpretat ion. In:Nonlinear Evolution Equations and Dynamical Systems.Leet.Notes in Phys.,120,Springer,New York, 1980.
McKean H.P.,van Moerbeke P.27The spectrum of Hill’s equation. Invent.Math.,1975,30,p.217.
Airault H.,McKean H.P.,Moser J.Rational and elliptic solutions of the KdV equation and a related many-body problem.Comm.Pure & Appl-Math.,1977,30,95.
Verdler J.L.New elliptic solitone.Preprint, 1987,Paris.
Hermite c.Oeuvres.Vol.3,Paris,Gauthier-Villars, 1912.
Krichever I.M.Elliptic solutions of Kadomtsev-Petvloshvlll equation and Integrdble particle systems.Funct.Anal.& Appl., 1980,14,p.45(in Russian).
Dubrovin B.A.,Matveev V.B.,Novikov S.P.Non-linear equations equations of Kdv type, finite-zone linear operators and dbellan varteties.Russ.Math.Surveys,1976,31 ,p.59.
Belokolos E.D.,Enols’kii V.Z.,Bobenko A.I.,Matveev Y.B. Algebro-geometrical principles of superposition of finite-gap solutions of Integrable nonlinear egtiations.Usp.Mat.Nauk, 1986,41,3
Belokolos E.D.,Enol’skii V.Z.Reduction of theta-functions and Humbert finite-gap potentials of Lame, Trelblch-Verdler, etc.Freprint IMP-88-051988,Kiev,1988.
Duistermaat J.J.,Grunbaum F.A.Differential equations in spectral parameter.Comm.Math.Fhys., 1986,103,p. 177.
Chudnovsky D.V.,Ghudnovsky G.V.Remark on the nature of the spectrum of Lome eguation.Lett.Nuovo Cim.,1980,29,p.545.
Ghudnovsky D.V.,Ghudnovsky G.V.Applications of Pade appoximation to the Grothendieck conjecture on linear differential equations.Lect.Notes in Math..,vol.1135,Number theory, Springer, 1986.
Moses J.Solution of a system of pollnomlal equations by elimination.Gonm.AuM,1966,9,p.634.
Buchberger B.Groebrver basis: a method in the symbolic mathematics. in:Progress, directions and open problems in multididimensional system theory (ed. Bose N.K.),Dordrecht,Reidel, 1985,p.184.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 1989 Springer-Verlag New York Inc.
About this paper
Cite this paper
Gerdt, V.F., Kostov, N.A. (1989). Computer Algebra in the Theory of Ordinary Differential Equations of Halphen Type. In: Kaltofen, E., Watt, S.M. (eds) Computers and Mathematics. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-9647-5_32
Download citation
DOI: https://doi.org/10.1007/978-1-4613-9647-5_32
Publisher Name: Springer, New York, NY
Print ISBN: 978-0-387-97019-6
Online ISBN: 978-1-4613-9647-5
eBook Packages: Springer Book Archive