[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

SPARQL-ST: Extending SPARQL to Support Spatiotemporal Queries

  • Chapter
  • First Online:
Geospatial Semantics and the Semantic Web

Part of the book series: Semantic Web and Beyond ((ADSW,volume 12))

Abstract

Spatial and temporal data is plentiful on the Web, and Semantic Web technologies have the potential to make this data more accessible and more useful. Semantic Web researchers have consequently made progress towards better handling of spatial and temporal data.SPARQL, the W3C-recommended query language for RDF, does not adequately support complex spatial and temporal queries. In this work, we present the SPARQL-ST query language. SPARQL-ST is an extension of SPARQL for complex spatiotemporal queries. We present a formal syntax and semantics for SPARQL-ST. In addition, we describe a prototype implementation of SPARQL-ST and demonstrate the scalability of this implementation with a performance study using large real-world and synthetic RDF datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 43.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://weather.unisys.com/hurricane/index.html.

  2. 2.

    http://whale.wheelock.edu/whalenet-stuff/stop\_{}\#{}cover.html.

  3. 3.

    License restrictions related to publication of timing results prevent us from disclosing the name of the database vendor.

  4. 4.

    http://knoesis.wright.edu/students/mperry/sparql-st.html.

  5. 5.

    http://www.census.gov/geo/www/cob/bdy\_{}files.html.

  6. 6.

    http://geospatialweb.googlecode.com/svn/trunk/jenaext/src/org/geospatialweb/arqext/.

References

  1. Alia I. Abdelmonty, Philip D. Smart, Christopher B. Jones, Gaihua Fu, and David Finch. A critical evaluation of ontology languages for geographic information retrieval on the internet. Journal of Visual Languages and Computing, 16(4):331–358, 2005.

    Article  Google Scholar 

  2. James F Allen. Maintaining knowledge about temporal intervals. Communications of the ACM, 26(11):832–843, 1983.

    Google Scholar 

  3. Kemafor Anyanwu, Angela Maduko, and Amit P. Sheth. SPARQ2L: Towards support for subgraph extraction queries in RDF databases. In 16th International World Wide Web Conference, pages 797–806, Banff, Alberta, Canada, 2007.

    Google Scholar 

  4. Dan Brickley and Ramanathan V. Guha. RDF vocabulary description language 1.0: RDF schema. W3C recommendation. http://www.w3.org/tr/rdf-schema/ .

  5. Anthony G Cohn, Brandon Bennett, John Gooday, and Nicholas Mark Gotts. Oualitative spatial representation and reasoning with the region connection calculus. GeoInformatica, 1(3): 275–316, 1997.

    Google Scholar 

  6. Max J Egenhofer. Toward the semantic geospatial web. In 10th ACM International Symposium on Advances in Geographic Information Systems, pages 1–4, McLean, VA, USA, 2002.

    Google Scholar 

  7. Max J Egenhofer and John R Herring. Categorizing binary topological relations between regions, lines, and points in geographic databases. Technical Report 94-1, University of Maine, National Center for Geographic Information and Analysis, 1994.

    Google Scholar 

  8. Claudio Gutierrez, Carlos Hurtado, and Alejandro Vaisman. Temporal RDF. In 2nd European Semantic Web Conference, pages 93–107, Heraklion, Crete, Greece, 2005.

    Google Scholar 

  9. Claudio Gutierrez, Carlos Hurtado, and Alejandro Vaisman. Introducing time into RDF. IEEE Transactions on Knowledge and Data Engineering, 19(2):207–218, February 2007.

    Article  Google Scholar 

  10. Patrick Hayes. RDF semantics. http://www.w3.org/tr/rdf-mt/ .

  11. Hewlett-Packard Development Company. ARQ - a SPARQL processor for jena. http://jena.http://sourceforge.net/arq/ .

  12. Jerry Hobbs and Feng Pan. An ontology of time for the semantic web. ACM Transactions on Asian Language Processing (TALIP): Special issue on Temporal Information Processing, 3(1):66–85, 2004.

    Google Scholar 

  13. Krys Kochut and Maciej Janik. SPARQLeR: Extended SPARQL for semantic association discovery. In 4th European Semantic Web Conference, pages 145–159, Innsbruck, Austria, 2007.

    Google Scholar 

  14. David Kolas, John Hebeler, and Mike Dean. Geospatial semantic web: Architecture of ontologies. In 1st International Conference on GeoSpatial Semantics, pages 183–194, Mexico City, Mexico, 2005.

    Google Scholar 

  15. David Kolas and Troy Self. Spatially-augmented knowledgebase. In 6th International Semantic Web Conference, pages 792–801, Busan, South Korea, 2007.

    Google Scholar 

  16. Manolis Koubarakis and Kostis Kyzirakos. Modeling and Querying Metadata in the Semantic Sensor Web: the model strdf and the query language stsparql. In Lora Aroyo, Grigoris Antoniou, Eero Hyvönen, Annette ten Teije, Heiner Stuckenschmidt, Liliana Cabral, and Tania Tudorache, editors, Proceedings of the 7th Extended Semantic Web Conference (ESWC2010), Heraklion, Crete, Greece, May 30 - June 3, 2010, Proceedings, Part I, volume 6088 of Lecture Notes in Computer Science. Springer, June 2010.

    Google Scholar 

  17. Joshua Lieberman. W3C geospatial incubator group. http://www.w3.org/2005/incubator/geo/ .

  18. Open Geospatial Consortium. Open geospatial consortium geospatial semantic web interoperability experiment. http://www.opengeospatial.org/projects/initiatives/gswie .

  19. Jorge Perez, Marcelo Arenas, and Claudio Gutierrez. Semantics and complexity of SPARQL. In 5th International Semantic Web Conference, pages 30–43, Athens, GA, USA, 2006.

    Google Scholar 

  20. Matthew Perry. Tontogen: A synthetic data set generator for semantic web applications. AIS SIGSEMIS Bulletin, 2(2):46–48, 2005.

    Google Scholar 

  21. Matthew Perry, Farshad Hakimpour, and Amit Sheth. Analyzing theme, space and time: An ontology-based approach. In 14th ACM International Symposium on Geographic Information Systems, pages 147–154, Arlington, VA, USA, 2006.

    Google Scholar 

  22. Matthew Perry, Amit P. Sheth, Farshad Hakimpour, and Prateek Jain. Supporting complex thematic, spatial and temporal queries over semantic web data. In 2nd International Conference on Geospatial Semantics, pages 228–246, Mexico City, Mexico, 2007.

    Google Scholar 

  23. Eric Prud’hommeaux and Andy Seaborne. SPARQL query language for RDF, W3C recommendation. http://www.w3.org/tr/rdf-sparql-query/ .

  24. Andrea Pugliese, Octavian Udrea, and V S Subrahmanian. Scaling RDF with time. In 17th International World Wide Web Conference, pages 605–614, Beijing, China, 2008.

    Google Scholar 

  25. Wolf Siberski, Jeff Z. Pan, and Uwe Thaden. Querying the semantic web with preferences. In 5th International Semantic Web Conference, pages 612–624, Athens, GA, USA, 2006.

    Google Scholar 

  26. Raj Singh, Andrew Turner, Mikel Maron, and Allan Doyle. GeoRSS: Geographically encoded objects for RSS feeds. http://georss.org/gml .

  27. Philip D. Smart, Alia I. Abdelmonty, Baher A. El-Geresy, and Christopher B. Jones. A framework for combining rules and geo-ontologies. In 1st International Conference on Web Reasoning and Rule Systems, pages 133–147, Innsbruck, Austria, 2007.

    Google Scholar 

  28. Yannis Theoharis, Vassilis Christophides, and Gregory Karvounarakis. Benchmarking database representations of RDF/S stores. In 5th International Semantic Web Conference, pages 685–701, Galway, Ireland, 2005.

    Google Scholar 

Download references

Acknowledgements

We thank Professor T. K. Prasad for his helpful comments on our formalization of SPARQL-ST, and Cory Henson for his comments on a draft of this work. This work is partially funded by NSF-ITRIDM Award #0714441 (SemDIS: Discovering Complex Relationships in the Semantic Web) and by NSF Award #IIS-0842129, titled “III-SGER: Spatio-Temporal-Thematic Queries of Semantic Web Data: a Study of Expressivity and Efficiency (09/01/2008-08/31/2010)”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew Perry .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Perry, M., Jain, P., Sheth, A.P. (2011). SPARQL-ST: Extending SPARQL to Support Spatiotemporal Queries. In: Ashish, N., Sheth, A. (eds) Geospatial Semantics and the Semantic Web. Semantic Web and Beyond, vol 12. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9446-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9446-2_3

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-9445-5

  • Online ISBN: 978-1-4419-9446-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics