[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Cohen Forcing Revisited

  • Chapter
Combinatorial Set Theory

Part of the book series: Springer Monographs in Mathematics ((SMM))

  • 2713 Accesses

Abstract

Since Cohen forcing is countable, it satisfies ccc, hence, Cohen forcing is proper. Furthermore, since forcing notions with the Laver property do not add Cohen reals, Cohen forcing obviously does not have the Laver property.

Not so obvious are the facts that Cohen forcing adds unbounded and splitting, but no dominating reals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 95.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
GBP 119.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tomek Bartoszyński: Additivity of measure implies additivity of category. Trans. Am. Math. Soc. 281, 209–213 (1984)

    MATH  Google Scholar 

  2. Tomek Bartoszyński: Combinatorial aspects of measure and category. Fundam. Math. 127, 225–239 (1987)

    MATH  Google Scholar 

  3. Tomek Bartoszyński, Haim Judah: Set Theory: On the Structure of the Real Line. AK Peters, Wellesley (1995)

    MATH  Google Scholar 

  4. Andreas Blass: Combinatorial cardinal characteristics of the continuum. In: Handbook of Set Theory, vol. 1, Matthew Foreman, Akihiro Kanamori (eds.), pp. 395–490. Springer, Berlin (2010)

    Chapter  Google Scholar 

  5. Thomas Jech: Multiple Forcing. Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge (1986)

    MATH  Google Scholar 

  6. Thomas Jech: Set Theory, The Third Millennium Edition, Revised and Expanded. Springer Monographs in Mathematics. Springer, Berlin (2003)

    MATH  Google Scholar 

  7. Kenneth Kunen: Some points in βN. Math. Proc. Camb. Philos. Soc. 80, 385–398 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  8. Kenneth Kunen: Set Theory, an Introduction to Independence Proofs. Studies in Logic and the Foundations of Mathematics, vol. 102. North-Holland, Amsterdam (1983)

    MATH  Google Scholar 

  9. Miloš S. Kurilić: Cohen-stable families of subsets of integers. J. Symb. Log. 66, 257–270 (2001)

    Article  MATH  Google Scholar 

  10. Arnold W. Miller: Some properties of measure and category. Trans. Am. Math. Soc. 266, 93–114 (1981)

    Article  MATH  Google Scholar 

  11. Janusz Pawlikowski: Why Solovay real produces Cohen real. J. Symb. Log. 51, 957–968 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  12. Zbigniew Piotrowski, Andrzej Szymański: Some remarks on category in topological spaces. Proc. Am. Math. Soc. 101, 156–160 (1987)

    Article  MATH  Google Scholar 

  13. Robert M. Solovay: A model of set theory in which every set of reals is Lebesgue measurable. Ann. Math. (2) 92, 1–56 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  14. Robert M. Solovay: Real-valued measurable cardinals. In: Axiomatic Set Theory, Dana S. Scott (ed.). Proceedings of Symposia in Pure Mathematics, vol. XIII, Part I, pp. 397–428. Am. Math. Soc., Providence (1971)

    Chapter  Google Scholar 

  15. Jacques Stern: Partitions of the real line into1 closed sets. In: Higher Set Theory, Proceedings, Oberwolfach, Germany, April 13–23, 1977, Gert H. Müller, Dana S. Scott (eds.). Lecture Notes in Mathematics, vol. 669, pp. 455–460. Springer, Berlin (1978)

    Chapter  Google Scholar 

  16. John K. Truss: Sets having calibre1. In: Logic Colloquium 76: Proceedings of a Conference held in Oxford in July 1976, R.O. Gandy, J.M.E. Hyland (eds.). Studies in Logic and the Foundations of Mathematics, vol. 87, pp. 595–612. North-Holland, Amsterdam (1977)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenz J. Halbeisen .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London Limited

About this chapter

Cite this chapter

Halbeisen, L.J. (2012). Cohen Forcing Revisited. In: Combinatorial Set Theory. Springer Monographs in Mathematics. Springer, London. https://doi.org/10.1007/978-1-4471-2173-2_21

Download citation

Publish with us

Policies and ethics