[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Solving Problems with Finite Test Sets

  • Chapter
Finite Versus Infinite

Abstract

Every finite and every co-finite set of non-negative integers is decidable. This is true and it is not, depending on whether the set is given constructively. A similar constraint is applicable in language theory and many other fields. The constraint is usually understood and, hence, omitted.

The phenomenon of a set being finite, but possibly undecidable, is, of course, a consequence of allowing non-constructive arguments in proofs. In this note we discuss a few ramifications of this fact. We start out with showing that every number theoretic statement that can be expressed in first-order logic can be reduced to a finite set, to be called a test set. Thus, if one knew the test set, one could determine the truth of the statement. The crucial point is, of course, that we may not be able to know what the finite test set is. Using problems in the class Π1 of the arithmetic hierarchy as an example, we establish that the bound on the size of the test set is Turing-complete and that it is upper-bounded by the busy-beaver function.

This re-enforces the fact that there is a vast difference between finiteness and constructive finiteness. In the context of the present re-opened discussion about the notion of computability — possibly extending its realm through new computational models derived from physics — the constraint of constructivity of the model itself may add another twist.

The Research reported in this paper was partially supported by Auckland University, Research Grant A18/XXXXX/602090/3414050, and by the Natural Sciences and Engineeringn Council and Canada, Grant OGP0000243.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. M. H. Albert, J. Lawrence, A proof of Ehrenfeucht’s conjecture, Theoret. Comput. Sci., 41 (1985), 121–123.

    Article  MathSciNet  MATH  Google Scholar 

  2. C. H. Bennett, Chaitin’s Omega, in Fractal Music, HyperCards, and More… (M. Gardner, ed.), W. H. Freeman, New York, 1992, 307–319.

    Google Scholar 

  3. R. P. Brent, J. v. d. Lune, H. J. J. t. Riele, D. T. Winter, On the zeros of the Riemann zeta function in the critical strip I, Math. Comp., 33 (1979), 1361–1372.

    Article  MathSciNet  MATH  Google Scholar 

  4. R. P. Brent, J. v. d. Lune, H. J. J. t. Riele, D. T. Winter, On the zeros of the Riemann zeta function in the critical strip II, Math. Comp., 39 (1979), 1361–1372.

    Article  Google Scholar 

  5. R. P. Brent, J. v. d. Lune, H. J. J. t. Riele, D. T. Winter, On the zeros of the Riemann zeta function in the critical strip III, Math. Comp., 41 (1979), 1361–1372.

    Article  Google Scholar 

  6. R. P. Brent, J. v. d. Lune, H. J. J. t. Riele, D. T. Winter, On the zeros of the Riemann zeta function in the critical strip IV, Math. Comp., 46 (1979), 1361–1372.

    Article  Google Scholar 

  7. C. Calude, Note on Ehrenfeucht’s conjecture and Hilbert’s basis theorem, Bull. EATCS, 29 (1986), 18–22.

    MATH  Google Scholar 

  8. C. Calude, Theories of Computational Complexities, North-Holland, Amsterdam, 1988.

    Google Scholar 

  9. C. S. Calude, G. J. Chaitin, Randomness everywhere. Nature, 400, 22 July (1999), 319–320.

    Article  Google Scholar 

  10. C. Calude, H. Jürgensen, M. Zimand, Is independence an exception? Applied Mathematics and Computation, 66 (1994), 63–76.

    Article  MathSciNet  MATH  Google Scholar 

  11. C. Calude, D. Vaida, Ehrenfeucht test set theorem and Hilbert basis theorem: A constructive glimpse, in Mathematical Foundations of Computer Science, 1989 (A. Kreczmar, G. Mirkowska, eds.), Lecture Notes in Computer Science 379, Springer-Verlag, Berlin, 1989, 177–184.

    Google Scholar 

  12. G. J. Chaitin, The Unknowable, Springer-Verlag, Singapore, 1999.

    MATH  Google Scholar 

  13. C. Choffrut, J. Karhumäki, Combinatorics on words, in Handbook of Formal Language Theory (G. Rozenberg, A. Salomaa, eds.), Vol. 1, Springer-Verlag, Berlin, 1987, 329–438.

    Google Scholar 

  14. M. Davis, Y. V. Matijasevič, J. Robinson, Hilbert’s tenth problem. Diophantine equations: Positive aspects of a negative solution, in Mathematical Developments Arising from Hilbert Problems (F. E. Browder, ed.), American Mathematical Society, Providence, RI, 1976, 323–378.

    Google Scholar 

  15. A. K. Dewdney, A computer trap for the busy beaver, the hardest-working Turing machine, Scientific American, 251(8) (1984), 19–23.

    MathSciNet  Google Scholar 

  16. A. K. Dewdney, The New Turing Omnibus, Computer Science Press, New York, 1993.

    MATH  Google Scholar 

  17. L. E. Dickson, History of the Theory of Numbers, Carnegie Institute, Washington, 1919, 1920, 1923, 3 volumes.

    MATH  Google Scholar 

  18. V. S. Guba, The equivalence of infinite systems of equations in free groups and semigroups, Mat. Zametki, 40 (1986), 321–324 (in Russian).

    MathSciNet  MATH  Google Scholar 

  19. G. H. Hardy, Goldbach’s theorem, Mat. Tid. B, 1 (1922), 1–16. Reprinted in Collected Papers of G. H. Hardy vol. 1, Oxford University Press, Oxford, 1966, 545–560.

    Google Scholar 

  20. J. Karhumäki, W. Rytter, S. Jarominek, Efficient constructions of test sets for regular and context-free languages, Theoret. Comput. Sci., 116 (1993), 305–316.

    Article  MathSciNet  MATH  Google Scholar 

  21. J. Karhumäki, W. Plandowski, W. Rytter, Polynomial size test sets for context-free languages, J. Comput. System Sci., 50 (1995), 11–19.

    Article  MathSciNet  MATH  Google Scholar 

  22. W. A. Light, T. J. Forres, N. Hammond, S. Roe, A note on the Goldbach conjecture, BIT, 20 (1980), 525.

    Article  MathSciNet  MATH  Google Scholar 

  23. Y. V. Matijasevič, Hilbert’s Tenth Problem, MIT Press, Cambridge, MA, 1993, 117–122.

    Google Scholar 

  24. S. Marcus, Bridging linguistics and computer science, via mathematics, in People and Ideas in Theoretical Computer Science (C. S. Calude, ed.), Springer-Verlag, Singapore, 1998, 163–176.

    Google Scholar 

  25. A. M. Odlyzko, Tables of zeros of the Riemann zeta function, http://www.research.att.com/amo/zeta_tables/index.html.

  26. C.-T. Pan, Goldbach Conjecture, Science Press, Beijing, 1992.

    MATH  Google Scholar 

  27. D. Perrin, On the solution of Ehrenfeucht’s conjecture, Bull. EATCS, 27 (1985), 68–70.

    Google Scholar 

  28. E. L. Post, Recursively enumerable sets of positive integers and their decision problems, Bull. (New Series) Amer. Math. Soc., 50 (1944), 284–316.

    Article  MathSciNet  MATH  Google Scholar 

  29. T. Rado, On non-computable numbers, Bell System Tech. J., 3 (1962), 977–884.

    MathSciNet  Google Scholar 

  30. B. Riemann, Über die Anzahl der Primzahlen unter einer gegebenen Größe, in Gesammelte mathematische Werke und, wissenchaftlicher Nachlaß, Springer-Verlag, Berlin, 1990, 177–185.

    Google Scholar 

  31. H. Riesel, Prime Numbers and Computer Methods for Factorization, Birkhäuser, Boston, second ed., 1994.

    Book  MATH  Google Scholar 

  32. H. Rogers, Theory of Recursive Functions and Effective Computability, McGraw-Hill, New York, 1967.

    MATH  Google Scholar 

  33. A. Salomaa, The Ehrenfeucht conjecture: A proof for language theorists, Bull. EATCS, 27 (1985), 71–82.

    Google Scholar 

  34. W. Yuan, ed., Goldbach Conjecture, World Scientific, Singapore, 1984.

    MATH  Google Scholar 

  35. Names of large numbers and unsolved problems, http://www.smartpages.com/faqs/sci-math-faq/unsolvedproblems/faq.html, December 1994.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag London Limited

About this chapter

Cite this chapter

Calude, C.S., Jürgensen, H., Legg, S. (2000). Solving Problems with Finite Test Sets. In: Finite Versus Infinite. Discrete Mathematics and Theoretical Computer Science. Springer, London. https://doi.org/10.1007/978-1-4471-0751-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-0751-4_4

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-251-8

  • Online ISBN: 978-1-4471-0751-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics