[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

3D Scan-Conversion of CSG Models into Distance, Closest-Point and Colour Volumes

  • Chapter
Volume Graphics

Abstract

Volume graphics is a growing field that generally involves representing three-dimensional objects as a rectilinear 3D grid of scalar values, a volume dataset. Given this kind of representation, numerous algorithms have been developed to process, manipulate and render volumes. Volume datasets may be generated in a variety of ways. Certain scanning devices, e.g. MRI and CT, generate a rectilinear grid of scalar values directly from their scanning process. The scalar values can represent the concentration of water or the density of matter at each grid point (voxel). Additionally, volume datasets can be generated from conventional geometric models, using a process called 3D scan-conversion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Requicha AAG, Voelcker HB. Solid modeling: A historical summary and contemporary assessment. IEEE Computer Graphics and Applications, 1982; 2 (2): 9–22.

    Article  Google Scholar 

  2. Barr A. Superquadrics and angle-preserving transformations. IEEE Computer Graphics and Applications, 1981; 1 (1): 11–23.

    Article  Google Scholar 

  3. Lorensen WE, Cline HE. Marching cubes: A high resolution 3D surface construction algorithm. ACM/SIGGRAPH Computer Graphics, 1987; 21 (4): 163–169.

    Article  Google Scholar 

  4. Whitaker RT, Breen DE. Level-set models for the deformation of solid objects. In: Proc. the 3rd International Workshop on Implicit Surfaces, Seattle, WA, June 1998; 19–35.

    Google Scholar 

  5. Sethian JA. Level Set Methods. Cambridge University Press; Cambridge, UK; 1996.

    Google Scholar 

  6. Breen DE. Constructive Cubes: CSG evaluation for display using discrete 3D scalar data sets. In: Proc. Eurographics ’91, Vienna, September 1991; 127–142.

    Google Scholar 

  7. Tilove RB. Set membership classification: A unified approach to geometric intersection problems. IEEE Transactions on Computers, 1980; C-29:874–883.

    Google Scholar 

  8. Cohen D, Kaufman A. Scan-conversion algorithms for linear and quadratic objects. In Volume Visualization. IEEE Computer Society Press; 1990; 280–301.

    Google Scholar 

  9. Jones MW. The production of volume data from triangular meshes using voxelisation. Computer Graphics Forum, 1996; 15 (5): 311–318.

    Google Scholar 

  10. Kaufman A. An algorithm for 3D scan-conversion of polygons. In: Proc. Eurographics ’87, Amsterdam, August 1987; 197–208.

    Google Scholar 

  11. Kaufman A. Efficient algorithms for 3D scan-conversion of parametric curves, surfaces, and volumes. ACM/SIGGRAPH Computer Graphics, 1987; 21 (4): 171–179.

    Article  MathSciNet  Google Scholar 

  12. Shareef N, Yagel R. Rapid previewing via volume-based solid modeling. In: Proc. 3rd Symposium on Solid Modeling and Applications, May 1995; 281–292.

    Google Scholar 

  13. Wang SM, Kaufman A. Volume-sampled 3D modeling. IEEE Computer Graphics and Applications, 1994; 14 (5): 26–32.

    Article  Google Scholar 

  14. Fang S, Srinivasan R. Volumetric-CSG — A model-based volume visualization approach. In: Proc. the 6th International Conference in Central Europe on Computer Graphics and Visualization; 1998.

    Google Scholar 

  15. Payne B, Toga A. Distance field manipulation of surface models. IEEE Computer Graphics and Applications, 1992; 12 (1): 65–71.

    Article  MATH  Google Scholar 

  16. Borgefors G. Distance transformations in digital images. Computer Vision, Graphics, and Image Processing, 1986; 34: 344–371.

    Article  Google Scholar 

  17. Cohen-Or D, Levin D, Solomivici A. Three-dimensional distance field metamorphosis. ACM Transactions on Graphics, 1998; 17 (2): 116–141.

    Article  Google Scholar 

  18. Requicha AAG, Voelcker HB. Boolean operations in solid modeling: Boundary evaluation and merging algorithms. Proceedings of the IEEE,

    Google Scholar 

  19. Maillot J, Yahia H, Verroust A. Interactive texture mapping. In: Proc. SIGGRAPH ’93, Anaheim, CA, August 1993; 27–34.

    Google Scholar 

  20. Litwinowicz P, Miller G. Efficient techniques for interactive texture placement. In: Proc. SIGGRAPH ’94, Orlando, FL, July 1994; 119–122.

    Google Scholar 

  21. Agrawala M, Beers AC, Levoy M. 3D painting on scanned surfaces. In: Proc. Symposium on Interactive 3D Graphics, April 1995; 145–150.

    Google Scholar 

  22. Pedersen HK. Decorating implicit surfaces. In: Proc. SIGGRAPH ’95, Los Angeles, August 1995; 291–300.

    Google Scholar 

  23. Pedersen HK. A framework for interactive texturing operations on curved surfaces. In: Proc. SIGGRAPH’96, New Orleans, August 1996; 295–302.

    Google Scholar 

  24. Smets-Solanes JP. Vector field based texture mapping of animated implicit objects. Computer Graphics Forum, 1996; 15 (3): 289–300.

    Article  Google Scholar 

  25. Tigges M, Wyvill B. Texture mapping the blobtree. In: Proc. 3rd Int. Workshop on Implicit Surfaces, Seattle, WA, June 1998; 123–130.

    Google Scholar 

  26. Zonenschein R, Gomes J, Velho L, de Figueiredo LH. Controlling texture mapping onto implicit surfaces with particle systems. In: Proc. the 3rd International Workshop on Implicit Surfaces, Seattle, WA, June 1998; 131–138.

    Google Scholar 

  27. Shibolet O, Cohen-Or D. Coloring voxel-based objects for virtual endoscopy. In: Proc. IEEE Symposium on Volume Visualization, Raleigh, NC, October 1998; 15–22.

    Google Scholar 

  28. Bier EA, Sloan Jr. KR. Two part texture mapping. IEEE Computer Graphics and Applications, 1986; 6 (9): 40–53.

    Article  Google Scholar 

  29. do Carno MP. Differential Geometry of Curves and Surfaces. Prentice Hall, Englewood Cliffs, NJ, 1976.

    Google Scholar 

  30. Getto P, Breen DE. An object-oriented architecture for a computer animation system. The Visual Computer, 1990; 6 (2): 79–92.

    Article  Google Scholar 

  31. Sethian JA. A fast marching level set method for monotonically advancing fronts. Proceedings of the National Academy of Science, 1996; 93 (4): 1591–1595.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag London

About this chapter

Cite this chapter

Breen, D.E., Mauch, S., Whitaker, R.T. (2000). 3D Scan-Conversion of CSG Models into Distance, Closest-Point and Colour Volumes. In: Chen, M., Kaufman, A.E., Yagel, R. (eds) Volume Graphics. Springer, London. https://doi.org/10.1007/978-1-4471-0737-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-0737-8_8

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-192-4

  • Online ISBN: 978-1-4471-0737-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics