[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Signals on Cellular Automata

  • Chapter
Collision-Based Computing

Abstract

The chapter studies some families of signals generated by cellular automata and shows their application in cellular algorithms. As it does not seem to be possible to give a general definition of a signal, we choose, in this chapter, to think about signals as trajectories of information quanta. Various cellular automata that support propagation of the signals are discussed in the text. We develop a cellular automaton algorithm which implements transformations between various types of signals, namely the signals traveling rightwards are mapped to other type of signals. Then a cellular automaton is designed which builds an infinite family of right signals. Finally, connections between signals and grids, which are guidelines for cellular computations, are exposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Albert J. and Čulik K. A simple universal cellular automaton and its one-way totalistic version Complex Systems 1 (1987) 1–16.

    MathSciNet  MATH  Google Scholar 

  2. Balzer R. An 8-states minimal time solution to the firing squad synchronization problem Information and Control 10 (1967) 22–42.

    Article  Google Scholar 

  3. Berlekamp E., Conway V., Elwyn R. and Guy R. Winning Ways for Your Mathematical Plays. Vol 2 (Academic Press, 1982).

    MATH  Google Scholar 

  4. Boccara N., Nasser J. and Roger M. Particle-like structures and their interactions in spatio-temporal patterns generated by one-dimensional deterministic cellular-automata rules. Physical Revue A 44 (1991) 866–875.

    Article  Google Scholar 

  5. Choffrut, C. and Čulik, K. On real time cellular automata and trellis automata Acta Informaticae 21 (1991) 393–407.

    Google Scholar 

  6. Cole S. Real-time computation by n-dimensional iterative arrays of finite-state machine IEEE Trans. Comput. C-18 (1969) 349–365.

    Google Scholar 

  7. Delorme M. and Mazoyer J. Reconnaissance parallèle des langages rationnels sur automates cellulaires plans Theoretical Computer Science (2002)to appear.

    Google Scholar 

  8. Delorme M., Mazoyer J. and Tougne L. Discrete parabolas and circles on 2D cellular automata. Theoretical Computer Science 218 (1999) 347–417.

    Article  MathSciNet  MATH  Google Scholar 

  9. Durand B. and Róka Zs. The Game of Life: universality revisited. In: M. Delorme and J. Mazoyer (Editors) Cellular Automata: A Parallel Model (Kluwer, 1999) 51–76.

    Google Scholar 

  10. Fisher P. Generation of primes by a one dimensional real time iterative array Journal of the ACM 12 (1965) 388–394.

    Article  Google Scholar 

  11. Ibarra O. Computational complexity of cellular automata: an overview In: M. Delorme and J. Mazoyer (Editors) Cellular Automata: A Parallel Model (Kluwer, 1999) 181–198.

    Google Scholar 

  12. Martin B. A goup interpretation of particles generated by one dimensional cellular automaton, 54 Wolfram’s rule Int. Journ. of Mod. Phys. C. 11–1 (2000) 101–123.

    Google Scholar 

  13. Mazoyer J. A six states minimal time solution to the Firing Squad Synchronization Problem Theoretical Computer Science 50 (1987) 183–238.

    Article  MathSciNet  MATH  Google Scholar 

  14. Mazoyer J. Computations on one-dimensional cellular automata Annals of Mathematics and Artificial Intelligence 16 (1996) 285–309.

    Article  MathSciNet  MATH  Google Scholar 

  15. Mazoyer J. Computations on grids In: M. Delorme and J. Mazoyer (Editors) Cellular Automata: A Parallel Model (Kluwer, 1999) 119–149.

    Google Scholar 

  16. Mazoyer J. and Rapaport I. Inducing an order on cellular automata by a grouping operation Discrete Applied Mathematics 91 (1999) 177–196.

    Article  MathSciNet  MATH  Google Scholar 

  17. Mazoyer J. and Terrier V. Signals in one dimensional cellular automata Theoretical Computer Science 217 (1999) 53–80.

    Article  MathSciNet  MATH  Google Scholar 

  18. Mazoyer J., Nichitiu C. and Rémila E. Algorithms for leader election by cellular automata to appear in Journal of Algorithms (2001).

    Google Scholar 

  19. Ollinger N. Towards an Algorithmic Classification of Cellular Automata. Research report, 2001–10, LIP, Ecole Normale Supérieure de Lyon, 2001.

    Google Scholar 

  20. Róka Zs. Automates cellulaires sur graphes de Cayley. Ph.D Thesis, Ecole Normale Supérieure de Lyon, 1994.

    Google Scholar 

  21. Smith A. A simple computation-universal space Journal of ACM 18 (1971) 339–353.

    Article  MATH  Google Scholar 

  22. Waksman A. An optimum solution to the firing squad synchronization problem Information and Control 9 (1966) 66–78.

    Article  MathSciNet  MATH  Google Scholar 

  23. Willson S. Cellular automata can generate fractals Discrete Applied Mathematics 8 (1984) 91–99.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag London

About this chapter

Cite this chapter

Delorme, M., Mazoyer, J. (2002). Signals on Cellular Automata. In: Adamatzky, A. (eds) Collision-Based Computing. Springer, London. https://doi.org/10.1007/978-1-4471-0129-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-0129-1_9

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-540-3

  • Online ISBN: 978-1-4471-0129-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics