Abstract
In this chapter, a scalable, multi-finger haptic device based on modular configuration is presented. The mechanical design is based on a modular configuration with a redundant degree of freedom in which each module represents one finger. Mechanical configuration has been optimized to provide a device, which is as transparent as possible to the user. A general description of the control requirements and the implementation to control these types of devices are presented. Applications of modular multi-finger haptic devices include advanced virtual manipulation and simulators for training precise manual tasks. In this chapter, applications for precise manipulation including haptic and visual feedback are presented. Three scenarios have been developed in order to analyze human factors, train manual manipulations and test the performance of the system: (i) a simulator to train physiotherapists to do rehabilitation procedures, (ii) manipulation of fragile objects, and (iii) collaborative manipulation to lift an object between two users.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Salisbury, J. K., & Srinivasan, M. A. (1997). Phantom based haptic interaction with virtual objects. IEEE Computer Graphics and Applications, 17(5), 6–10.
Škorc, G., Zapušek, S., Čas, J., & Šafarič R. (2010). Virtual user interface for the remote control of a nanorobotic cell using a haptic-device. Strojniški Vestnik—Journal of Mechanical Engineering, 56(7–8), 423–435.
Peer, A., & Buss, M. (2008). A new admittance-type haptic interface for bimanual manipulations. IEEE/ASME Transactions on Mechatronics, 13(4), 416–428.
Waldron, K. J., & Tollon, K. (2003). Mechanical characterization of the immersion corp. haptic, bimanual, surgical simulation interface. In 8th international symposium on experimental robotics (Vol. 5, pp. 106–112).
Okamura, A. M. (2004). Methods for haptic feedback in teleoperated robot-assisted surgery. Industrial Robot: An International Journal, 31(6), 499–508.
McMahan, W., Gewirtz, J., Standish, D., Martin, P., Kunkel, J. A., Lilavois, M., & Kuchenbecker, K. J. (2011). Tool contact acceleration feedback for telerobotic surgery. IEEE Transactions on Haptics, 4(3), 210–220.
Ferre, M., Galiana, M., Wirz, R., & Tuttle, N. (2011). Haptic device for capturing and simulating hand manipulation rehabilitation. IEEE/ASME Transactions on Mechatronics, 16(5), 808–815.
Strolz, M., Groten, R., Peer, A., & Buss, M. (2011). Development and evaluation of a device for the haptic rendering of rotatory car doors. IEEE Transactions on Industrial Electronics, 58(8), 3133–3140.
Coles, T. R., Meglan, D., & John, N. W. (2011). The role of haptics in medical training simulators: a survey of the state of the art. IEEE Transactions on Haptics, 4(1), 51–66.
Robotiq Adaptive Gripper—ROBOTIQ flexible robot grippers designer and manufacturer. http://robotiq.com/en/products/adaptive-robot-gripper.
Raju, G. J., Verghese, G. C., & Sheridan, T. B. (1989). Design issues in 2-port network models of bilateral remote teleoperation. In IEEE international conference on robotics and automation (pp. 1317–1321).
Yokokohji, Y., & Yoshikawa, T. (1992). Bilateral control of master-slave manipulators for ideal kinesthetic coupling-formulation and experiment. IEEE Transactions on Robotics and Automation, 10(5), 605–620. doi:10.1109/70.326566.
Lawrence, D. A. (1993). Stability and transparency in bilateral teleoperation. IEEE Transactions on Robotics and Automation, 9(5), 624–637. doi:10.1109/70.258054.
Lee, S. S., & Lee, J. M. (2003). Design of a general purpose 6-DOF haptic interface. Mechatronics, 13, 697–722.
O’Malley, M., & Goldfarb, M. (2002). The effect of force saturation on the haptic perception of detail. IEEE/ASME Transactions on Mechatronics, 7(3), 280–288.
López, . J., Breñosa, J., Galiana, I., Ferre, M., Giménez, A., & Barrio, J. (2012). Mechanical design optimization for multi-finger haptic devices applied to virtual grasping manipulation. Strojniški Vestnik—Journal of Mechanical Engineering, 58(7–8), 431–443.
Giachritsis, C. D., Ferre, M., Barrio, J., & Wing, A. (2011). Unimanual and bimanual weight perception of virtual objects with a new multi-finger haptic interface. Brain Research Bulletin, 85(5), 271–276.
Cervantes-Sánchez, J. J., Hernández-Rodríguez, J. C., & Rendón-Sánchez, J. G. (2000). On the workspace, assembly configurations and singularity curves of the RRRRR-type planar manipulator. Mechanism and Machine Theory, 35, 1117–1139.
Garcia-Robledo, P., Ortego, J., Ferre, M., Barrio, J., & Sanchez-Uran, M. A. (2011). Segmentation of bimanual virtual object manipulation tasks using multifinger haptic interfaces. IEEE Transactions on Instrumentation and Measurement, 60(1), 69–80.
García-Robledo, P., Ortego, J., Barrio, J., Galiana, I., Ferre, M., & Aracil, R. (2009). Multifinger haptic interface for bimanual manipulation of virtual objects interaction between two hands and virtual objects with MasterFinger. In IEEE international workshop on haptic audio visual environments and games, Lecco (pp. 30–35).
Liu, X. J., Wang, J., & Pritschow, G. (2006). Performance atlases and optimum design of planar 5R symmetrical parallel mechanisms. Mechanism and Machine Theory, 41, 119–144.
Cobos, S., Ferre, M., Sánchez-Urán, M. A., Ortego, J., & Aracil, R. (2010). Human hand descriptions and gesture recognition for object manipulation. Computer Methods in Biomechanics and Biomedical Engineering, 13(3), 305–317.
Cutkosky, M. R. (1989). On grasp choice, grasp models, and the design of hands for manufacturing tasks. IEEE Transactions on Robotics and Automation, 5(3), 269–279.
Endo, T., Kawasaki, H., Mouri, T., Ishigure, Y., Shimomura, H., Matsumura, M., & Koketsu, K. (2011). Five-fingered haptic interface robot: HIRO III. IEEE Transaction on Haptics, 4(1).
Hannaford, B., & Okamura, M. (2008). Haptics. In B. Siciliano & O. Khatib (Eds.), Handbook of robotics (p. 720). Berlin: Springer. ISBN: 9789-3-540-23957-4. Chap. 20.
Cerrada, P., Breñosa, J., Galiana, I., López, J., Ferre, M., Giménez, A., & Aracil, R. (2011). Optimal mechanical design of modular haptic devices. In Advanced intelligent mechatronics, IEEE/ASME international conference, AIM2011, Budapest, Hungary.
Garcia-Robledo, P., Ortego, J., Barrio, J., Galiana, I., Ferre, M., & Aracil, R. (2009). Multifinger haptic interface for bimanual manipulation of virtual objects. In IEEE international workshop on haptic audio visual environments and games. HAVE.
Ferre, M., Galiana, I., & Aracil, R. (2011). Design of a lightweight, cost effective thimble-like sensor for haptic applications based on contact force sensors. Sensors, 11, 11495–11509.
Galiana, I., Bielza, M., & Ferre, M. (2010). Estimation of normal and tangential manipulation forces by using contact force sensors. In Lecture notes in computer science springer, eurohaptics 2010, Amsterdam, The Netherlands.
Monroy, M., Ferre, M., Barrio, J., Eslava, V., & Galiana, I. (2009). Sensorized thimble for haptic applications. In IEEE international conference on mechatronics 2009, Málaga, Spain.
Wirz R, ., Marin, R., Ferre, M., Barrio, J., Claver, J. M., & Ortego, J. (2009). Bidirectional transport protocol for teleoperated robots. IEEE Transactions on Industrial Electronics, 56(9), 3772–3781.
National Instruments. Available online on October 2012: http://www.ni.com/pxi/.
Melder, N., Harwin, W., & Sharkey, P. (2003). Translation and rotation of multi-point contacted virtual objects. In Proceedings of the WorldHaptics conference (pp. 218–277).
Nourian, S., Shen, X., & Georganas, N. D. (2006). XPHEVE: an extensible physics engine for virtual environments. In Canadian conference on electrical and computer engineering, CCECE’06, May 2006 (pp. 1546–1549).
Tuttle, N., & Jacuinde, G. (2011). Design and construction of a novel low-cost device to provide feedback on manually applied forces. The Journal of Orthopaedic and Sports Physical Therapy, 41, 174–179.
Lee, M., Gal, J., & Herzog, W. (2000). Biomechanics of manual therapy. In Z. Dvir (Ed.), Clinical biomechanics (pp. 209–237). Philadelphia: Churchill Livingstone.
Tholey, G., & Desai, J. P. (2007). A general-purpose 7 DOF haptic device: applications toward robot-assisted surgery. IEEE/ASME Transactions on Mechatronics, 12(6), 662–669.
Werner, D., Kozin, S. H., Brozovich, M., Porter, S. T., Junkin, D., & Seigler, S. (2003). The biomechanical properties of the finger metacarpophalangeal joints to varus and valgus stress. The Journal of Hand Surgery (American Volume), 28, 1044–1051.
Samur, E., Wang, F., Spaelter, U., & Bleuler, H. (2007). Generic and systematic evaluation of haptic interfaces based on testbeds. In IEEE/RSJ international conference on intelligent robots and systems, IROS 2007, October 2007 (pp. 2113–2119).
Fisher, R. (1970). Intraclass correlations and the analysis of variance. In Statistical methods for research workers (14th ed.). Edinburgh: Oliver and Boyd.
Acknowledgements
This work has been partially supported by Madrid Community in the framework of The IV PRICIT through the project TECHNOFUSION(P2009/ENE/1679), the TEMAR project under grant DPI2009-12283 from the Spanish Ministry of Science and Innovation (MICINN) and UPM under ‘Formación de Personal Investigador’.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag London
About this chapter
Cite this chapter
Galiana, I., Barrio, J., Breñosa, J.M., Ferre, M. (2013). Modular Multi-finger Haptic Device: Mechanical Design, Controller and Applications. In: Galiana, I., Ferre, M. (eds) Multi-finger Haptic Interaction. Springer Series on Touch and Haptic Systems. Springer, London. https://doi.org/10.1007/978-1-4471-5204-0_4
Download citation
DOI: https://doi.org/10.1007/978-1-4471-5204-0_4
Publisher Name: Springer, London
Print ISBN: 978-1-4471-5203-3
Online ISBN: 978-1-4471-5204-0
eBook Packages: Computer ScienceComputer Science (R0)