Abstract
The importance of contextual information has been recognized by researchers and practitioners in many disciplines, including e-commerce, personalization, information retrieval, ubiquitous and mobile computing, data mining, marketing, and management. Prior work has extensively demonstrated that relevant contextual information does matter in recommender systems and that it is important to take this information into account when providing recommendations. We discuss the general notion of context and major approaches to modeling it in recommender systems, including explicit vs. latent and static vs. dynamic approaches. We also discuss three popular algorithmic paradigms—contextual pre-filtering, post-filtering, and modeling—for incorporating contextual information into the recommendation process, and survey the recent advances in contextual modeling that include tensor factorization, deep learning, and reinforcement learning techniques. We also discuss important directions for future research.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
S. Abbar, M. Bouzeghoub, S. Lopez, Context-aware recommender systems: a service-oriented approach, in VLDB PersDB Workshop (2009)
M.H. Abdi, G. Okeyo, R.W. Mwangi, Matrix factorization techniques for context-aware collaborative filtering recommender systems: a survey (2018)
G.D. Abowd, C.G. Atkeson, J. Hong, S. Long, R. Kooper, M. Pinkerton, Cyberguide: a mobile context-aware tour guide. Wirel. Netw. 3(5), 421–433 (1997)
G. Adomavicius, R. Sankaranarayanan, S. Sen, A. Tuzhilin, Incorporating contextual information in recommender systems using a multidimensional approach. ACM Trans. Inf. Syst. 23(1), 103–145 (2005)
G. Adomavicius, A. Tuzhilin, Incorporating context into recommender systems using multidimensional rating estimation methods, in Proceedings of the 1st International Workshop on Web Personalization, Recommender Systems and Intelligent User Interfaces (WPRSIUI 2005) (2005)
G. Adomavicius, A. Tuzhilin, Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. IEEE Trans. Knowl. Data Eng. 17(6), 734–749 (2005)
G. Adomavicius, A. Tuzhilin, R. Zheng, REQUEST: a query language for customizing recommendations. Inf. Syst. Res. 23(1), 99–117 (2011)
G. Adomavicius, D. Jannach, Preface to the special issue on context-aware recommender systems. User Model. User-Adapt. Interact. 24(1–2), 1–5 (2014)
G. Adomavicius, B. Mobasher, F. Ricci, A. Tuzhilin, Context-aware recommender systems. AI Mag. 32(3), 67–80 (2011)
G. Adomavicius, A. Tuzhilin, Multidimensional recommender systems: a data warehousing approach, in Electronic Commerce, ed. by L. Fiege, G. Mühl, U. Wilhelm. Lecture Notes in Computer Science, vol. 2232 (Springer, Berlin, 2001), pp. 180–192
D. Agarwal, Scaling machine learning and statistics for web applications, in Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’15 (Association for Computing Machinery, New York, 2015), p. 1621
H. Ahn, K. Kim, I. Han, Mobile advertisement recommender system using collaborative filtering: MAR-CF, in Proceedings of the 2006 Conference of the Korea Society of Management Information Systems (2006), pp. 709–715
E. Alpaydin, Introduction to Machine Learning (The MIT Press, London, 2004)
S.S. Anand, B. Mobasher, Contextual recommendation. WebMine, LNAI 4737, 142–160 (2007)
A. Ansari, S. Essegaier, R. Kohli, Internet recommendation systems. J. Market. Res. 37(3), 363–375 (2000)
L. Ardissono, A. Goy, G. Petrone, M. Segnan, P. Torasso, Intrigue: personalized recommendation of tourist attractions for desktop and hand held devices. Appl. Artif. Intell. 17(8), 687–714 (2003)
L. Baltrunas, X. Amatriain, Towards time-dependant recommendation based on implicit feedback, in Workshop on Context-Aware Recommender Systems (CARS 2009), New York (2009)
L. Baltrunas, F. Ricci, Context-dependent items generation in collaborative filtering, in Workshop on Context-Aware Recommender Systems (CARS 2009), New York (2009)
L. Baltrunas, Keynote: contextualization at netflix, in Workshop on Context-Aware Recommender Systems at the 13th ACM Conference on Recommender Systems, RecSys ’19 (2019)
L. Baltrunas, K. Church, A. Karatzoglou, N. Oliver, Frappe: understanding the usage and perception of mobile app recommendations in-the-wild. Preprint, arXiv:1505.03014 (2015)
L. Baltrunas, M. Kaminskas, B. Ludwig, O. Moling, F. Ricci, A. Aydin, K.-H. Lüke, R. Schwaiger, Incarmusic: context-aware music recommendations in a car, in E-Commerce and Web Technologies, ed. by C. Huemer, T. Setzer. Lecture Notes in Business Information Processing, vol. 85 (Springer, Berlin, 2011), pp. 89–100
L. Baltrunas, B. Ludwig, S. Peer, F. Ricci, Context-aware places of interest recommendations for mobile users, in Design, User Experience, and Usability. Theory, Methods, Tools and Practice, ed. by A. Marcus. Lecture Notes in Computer Science, vol. 6769 (Springer, Berlin, 2011), pp. 531–540
L. Baltrunas, B. Ludwig, S. Peer, F. Ricci, Context relevance assessment and exploitation in mobile recommender systems. Pers. Ubiquit. Comput. 16(5), 507–526 (2012)
L. Baltrunas, B. Ludwig, F. Ricci, Matrix factorization techniques for context aware recommendation, in Proceedings of the Fifth ACM Conference on Recommender Systems, RecSys ’11 (ACM, New York, 2011), pp. 301–304
L. Baltrunas, F. Ricci, Experimental evaluation of context-dependent collaborative filtering using item splitting. User Model. User-Adap. Inter. 24(1–2), 7–34 (2014)
Z. Batmaz, A. Yurekli, A. Bilge, C. Kaleli, A review on deep learning for recommender systems: challenges and remedies. Artif. Intell. Rev. 52(1), 1–37 (2019)
K. Bauman, A. Tuzhilin, Discovering contextual information from user reviews for recommendation purposes, in Proceedings of the ACM RecSys Workshop on New Trends in Content Based Recommender Systems (2014)
K. Bauman, A. Tuzhilin, Know thy context: parsing contextual information from user reviews for recommendation purposes. Inf. Syst. Res. (2021). Forthcoming
M. Bazire, P. Brézillon, Understanding context before using it, in Proceedings of the 5th International Conference on Modeling and Using Context, ed. by A. Dey et al. (Springer, Berlin, 2005)
A. Beutel, P. Covington, S. Jain, C. Xu, J. Li, V. Gatto, Ed.H. Chi, Latent cross: making use of context in recurrent recommender systems, in Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining (2018), pp. 46–54
M. Braunhofer, M. Elahi, M. Ge, F. Ricci, Context dependent preference acquisition with personality-based active learning in mobile recommender systems, in Learning and Collaboration Technologies. Technology-Rich Environments for Learning and Collaboration - First International Conference, LCT 2014, Held as Part of HCI International 2014, Heraklion, Crete, Greece, June 22–27, 2014, Proceedings, Part II, ed. by P. Zaphiris, A. Ioannou. Lecture Notes in Computer Science, vol. 8524 (Springer, Berlin, 2014), pp. 105–116
M. Braunhofer, M. Elahi, F. Ricci, STS: a context-aware mobile recommender system for places of interest, in Posters, Demos, Late-breaking Results and Workshop Proceedings of the 22nd Conference on User Modeling, Adaptation, and Personalization (UMAP2014), Aalborg, Denmark, July 7–11, 2014. CEUR Workshop Proceedings, vol. 1181, ed. by I. Cantador, M. Chi, R. Farzan, R. Jäschke (2014). CEUR-WS.org
M. Braunhofer, M. Kaminskas, F. Ricci, Recommending music for places of interest in a mobile travel guide, in Proceedings of the Fifth ACM Conference on Recommender Systems, RecSys ’11 (ACM, New York, 2011), pp. 253–256
J.S. Breese, D. Heckerman, C. Kadie, Empirical analysis of predictive algorithms for collaborative filtering, in Proceedings of the Fourteenth Conference on Uncertainty in Artificial Intelligence, San Francisco, CA, vol. 461 (1998), pp. 43–52
B. Brost, R. Mehrotra, T. Jehan, The music streaming sessions dataset, in Proceedings of the 2019 Web Conference (ACM, New York, 2019)
R. Bulander, M. Decker, G. Schiefer, B. Kolmel, Comparison of different approaches for mobile advertising, in Proceedings of the Second IEEE International Workshop on Mobile Commerce and Services, WMCS ’05 (IEEE Computer Society, Washington, DC, 2005), pp. 174–182
R. Burke, Hybrid recommender systems: survey and experiments. User Model. User-Adap. Inter. 12(4), 331–370 (2002)
R. Burke, Hybrid web recommender systems, in The Adaptive Web (2007), pp. 377–408
R. Cai, C. Zhang, C. Wang, L. Zhang, W.-Y. Ma, Musicsense: contextual music recommendation using emotional allocation modeling, in Proceedings of the 15th International Conference on Multimedia, MULTIMEDIA ’07 (ACM, New York, 2007), pp. 553–556
P.G. Campos, F. Díez, I. Cantador, Time-aware recommender systems: a comprehensive survey and analysis of existing evaluation protocols. User Model. User-Adapt. Interact. 24(1–2), 67–119 (2014)
I. Cantador, P. Castells, Semantic contextualisation in a news recommender system, in Workshop on Context-Aware Recommender Systems (CARS 2009), New York (2009)
F. Cena, L. Console, C. Gena, A. Goy, G. Levi, S. Modeo, I. Torre, Integrating heterogeneous adaptation techniques to build a flexible and usable mobile tourist guide. AI Commun. 19(4), 369–384 (2006)
S. Chatterjee, A.S. Hadi, B. Price, Regression Analysis by Example (Wiley, New York, 2000)
S. Chaudhuri, U. Dayal, An overview of data warehousing and olap technology. ACM Sigmod Rec. 26(1), 65–74 (1997)
H. Chen, J. Li, Adversarial tensor factorization for context-aware recommendation, in Proceedings of the 13th ACM Conference on Recommender Systems (2019), pp. 363–367
K. Cheverst, N. Davies, K. Mitchell, A. Friday, C. Efstratiou, Developing a context-aware electronic tourist guide: some issues and experiences, in Proceedings of the SIGCHI conference on Human factors in computing systems (ACM, New York, 2000), pp. 17–24
C. Chi, R.T. Tsai, J. Lai, J.Y. Hsu, A reinforcement learning approach to emotion-based automatic playlist generation, in 2010 International Conference on Technologies and Applications of Artificial Intelligence (2010), pp. 60–65
K. Church, B. Smyth, P. Cotter, K. Bradley, Mobile information access: a study of emerging search behavior on the mobile internet. ACM Trans. Web 1(1), 4-es (2007)
V. Codina, F. Ricci, L. Ceccaroni, Exploiting the semantic similarity of contextual situations for pre-filtering recommendation, in User Modeling, Adaptation, and Personalization, ed. by S. Carberry, S. Weibelzahl, A. Micarelli, G. Semeraro. Lecture Notes in Computer Science, vol. 7899 (Springer, Berlin, 2013), pp. 165–177
F.S. da Costa, P. Dolog, Collective embedding for neural context-aware recommender systems, in Proceedings of the 13th ACM Conference on Recommender Systems, RecSys ’19 (Association for Computing Machinery, New York, 2019), pp. 201–209
B. De Carolis, I. Mazzotta, N. Novielli, V. Silvestri, Using common sense in providing personalized recommendations in the tourism domain, in Workshop on Context-Aware Recommender Systems (CARS 2009), New York (2009)
X. Ding, J. Tang, T. Liu, C. Xu, Y. Zhang, F. Shi, Q. Jiang, D. Shen, Infer implicit contexts in real-time online-to-offline recommendation, in Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD ’19 (Association for Computing Machinery, New York, 2019), pp. 2336–2346
P. Dourish, What we talk about when we talk about context. Pers. Ubiquit. Comput. 8(1), 19–30 (2004)
P. Dragone, R. Mehrotra, M. Lalmas, Deriving user- and content-specific rewards for contextual bandits, in The World Wide Web Conference, WWW ’19 (Association for Computing Machinery, New York, 2019), pp. 2680–2686
B. Fling, Mobile Design and Development: Practical Concepts and Techniques for Creating Mobile Sites and Web Apps, 1st edn. (O’Reilly Media, Sebastopol, 2009)
E. Frolov, I. Oseledets, Tensor methods and recommender systems. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 7(3), e1201 (2017)
M. Gorgoglione, U. Panniello, A. Tuzhilin, Recommendation strategies in personalization applications. Inf. Manag. 56(6), 103143 (2019)
C. Hansen, C. Hansen, L. Maystre, R. Mehrotra, B. Brost, F. Tomasi, M. Lalmas, Contextual and sequential user embeddings for large-scale music recommendation, in Fourteenth ACM Conference on Recommender Systems (2020), pp. 53–62
N. Hariri, B. Mobasher, R. Burke, Context-aware music recommendation based on latent topic sequential patterns, in Proceedings of the Sixth ACM Conference on Recommender Systems, RecSys ’12 (ACM, New York, 2012), pp. 131–138
N. Hariri, B. Mobasher, R. Burke, Query-driven context aware recommendation, in Proceedings of the 7th ACM Conference on Recommender Systems, RecSys ’13 (ACM, New York, 2013), pp. 9–16
N. Hariri, B. Mobasher, R. Burke, Y. Zheng, Context-aware recommendation based on review mining, in Proceedings of the 9th Workshop on Intelligent Techniques for Web Personalization and Recommender Systems (ITWP 2011). Citeseer, (2011), p. 30
K. Haruna, M.A. Ismail, S. Suhendroyono, D. Damiasih, A. Pierewan, H. Chiroma, T. Herawan, Context-aware recommender system: a review of recent developmental process and future research direction. Appl. Sci. 7(12), 1211 (2017)
R. Hastings, AWS re:Invent 2012, Day 1 Keynote (2012). http://www.youtube.com/watch?v=8FJ5DBLSFe4. YouTube video; see the video at 44:40 min
X. He, T.-S. Chua, Neural factorization machines for sparse predictive analytics, in Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval (2017), pp. 355–364 (2017)
X. He, L. Liao, H. Zhang, L. Nie, X. Hu, T.-S. Chua, Neural collaborative filtering, in Proceedings of the 26th International Conference on World Wide Web (2017), pp. 173–182
B. Hu, C. Shi, W.X. Zhao, P.S. Yu, Leveraging meta-path based context for top- n recommendation with a neural co-attention model, in Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD ’18 (Association for Computing Machinery, New York, 2018), pp. 1531–1540
T. Hussein, T. Linder, W. Gaulke, J. Ziegler, Context-aware recommendations on rails, in Workshop on Context-Aware Recommender Systems (CARS 2009), New York (2009)
T. Hussein, T. Linder, W. Gaulke, J. Ziegler, Hybreed: a software framework for developing context-aware hybrid recommender systems. User Model. User-Adapt. Interact. 24(1–2), 121–174 (2014)
D. Jannach, K. Hegelich, A case study on the effectiveness of recommendations in the mobile internet, in Proceedings of the Third ACM Conference on Recommender Systems, RecSys ’09 (ACM, New York, 2009), pp. 205–208
T. Jiang, A. Tuzhilin, Improving personalization solutions through optimal segmentation of customer bases. IEEE Trans. Knowl. Data Eng. 21(3), 305–320 (2009)
M. Kaminskas, F. Ricci, Contextual music information retrieval and recommendation: State of the art and challenges. Comput. Sci. Rev. 6(2–3), 89–119 (2012)
A. Karatzoglou, X. Amatriain, L. Baltrunas, N. Oliver, Multiverse recommendation: N-dimensional tensor factorization for context-aware collaborative filtering, in Proceedings of the Fourth ACM Conference on Recommender Systems, RecSys ’10 (ACM, New York, 2010), pp. 79–86
A. Karatzoglou, L. Baltrunas, K. Church, M. Böhmer, Climbing the app wall: enabling mobile app discovery through context-aware recommendations, in Proceedings of the 21st ACM International Conference on Information and Knowledge Management, CIKM ’12 (ACM, New York, 2012), pp. 2527–2530
R. Kimball, M. Ross, The Data Warehousing Toolkit (Wiley, New York, 1996)
J. Kiseleva, H.T. Lam, M. Pechenizkiy, T. Calders, Discovering temporal hidden contexts in web sessions for user trail prediction, in Proceedings of the 22Nd International Conference on World Wide Web Companion, WWW ’13 Companion, Republic and Canton of Geneva (2013), pp. 1067–1074. International World Wide Web Conferences Steering Committee
D. Koller, M. Sahami, Toward optimal feature selection, in Proceedings of the 13th International Conference on Machine Learning (Morgan Kaufmann, Burlington, 1996), pp. 284–292
Y. Koren, Factorization meets the neighborhood: a multifaceted collaborative filtering model, in Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (ACM, New York, 2008), pp. 426–434
G. Koutrika, B. Bercovitz, H. Garcia-Molina, Flexrecs: expressing and combining flexible recommendations, in Proceedings of the 35th SIGMOD international conference on Management of data (ACM, Providence, 2009), pp. 745–758
N. Lathia, The Anatomy of Mobile Location-Based Recommender Systems (Springer US, Boston, 2015), pp. 493–510
H.J. Lee, S.J. Park, Moners: a news recommender for the mobile web. Expert Syst. Appl. 32(1), 143–150 (2007)
J.J. Levandoski, M.D. Ekstrand, M. Ludwig, A. Eldawy, M.F. Mokbel, J. Riedl, Recbench: benchmarks for evaluating performance of recommender system architectures. Proc. VLDB 4(11), 911–920 (2011)
J.J. Levandoski, A. Eldawy, M.F. Mokbel, M.E. Khalefa, Flexible and extensible preference evaluation in database systems. ACM Trans. Database Syst. 38(3), 17 (2013)
P. Li, A. Tuzhilin, Latent multi-criteria ratings for recommendations, in Proceedings of the 13th ACM Conference on Recommender Systems, RecSys ’19 (Association for Computing Machinery, New York, 2019), pp. 428–431
E. Liebman, M. Saar-Tsechansky, P. Stone, The right music at the right time: adaptive personalized playlists based on sequence modeling. MIS Q. 43(3), 765–786 (2019)
H. Liu, J. Hu, M. Rauterberg, Music playlist recommendation based on user heartbeat and music preference, in 2009 International Conference on Computer Technology and Development, vol. 1 (2009), pp. 545–549
H. Liu, H. Motoda, Feature Selection for Knowledge Discovery and Data Mining (Springer, New York, 1998)
Q. Liu, S. Wu, D. Wang, Z. Li, L. Wang, Context-aware sequential recommendation, in 2016 IEEE 16th International Conference on Data Mining (ICDM) (IEEE, Piscataway, 2016), pp. 1053–1058
S. Lombardi, S.S. Anand, M. Gorgoglione, Context and customer behavior in recommendation, in Workshop on Context-Aware Recommender Systems (CARS 2009), New York (2009)
W. Luan, G. Liu, C. Jiang, L. Qi, Partition-based collaborative tensor factorization for poi recommendation. IEEE/CAA J. Automat. Sin. 4(3), 437–446 (2017)
T. Mahmood, F. Ricci, A. Venturini, Improving recommendation effectiveness: adapting a dialogue strategy in online travel planning. J. IT Tour. 11(4), 285–302 (2009)
J. McInerney, B. Lacker, S. Hansen, K. Higley, H. Bouchard, A. Gruson, R. Mehrotra, Explore, exploit, and explain: personalizing explainable recommendations with bandits, in Proceedings of the 12th ACM Conference on Recommender Systems, RecSys ’18 (Association for Computing Machinery, New York, 2018), pp. 31–39
L. Mei, P. Ren, Z. Chen, L. Nie, J. Ma, J.-Y. Nie, An attentive interaction network for context-aware recommendations, in Proceedings of the 27th ACM International Conference on Information and Knowledge Management, CIKM ’18 (Association for Computing Machinery, New York, 2018), pp. 157–166
H.F. Nweke, Y.W. Teh, M.A. Al-Garadi, U.R. Alo, Deep learning algorithms for human activity recognition using mobile and wearable sensor networks: State of the art and research challenges. Expert Syst. Appl. 105, 233–261 (2018)
A. Odic, M. Tkalcic, J.F. Tasic, A. Kosir, Predicting and detecting the relevant contextual information in a movie-recommender system. Interact. Comput. 25(1), 74–90 (2013)
S. Ojagh, M.R. Malek, S. Saeedi, S. Liang, An internet of things (IoT) approach for automatic context detection, in 2018 IEEE 9th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON) (IEEE, Piscataway, 2018), pp. 223–226
M. Okawa, T. Iwata, T. Kurashima, Y. Tanaka, H. Toda, N. Ueda, Deep mixture point processes: Spatio-temporal event prediction with rich contextual information, in Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD ’19 (Association for Computing Machinery, New York, 2019), pp. 373–383
K. Oku, S. Nakajima, J. Miyazaki, S. Uemura, Context-aware SVM for context-dependent information recommendation, in Proceedings of the 7th International Conference on Mobile Data Management (2006), p. 109
R.O. Oyeleke, C.-Y. Yu, C.K. Chang, Situ-centric reinforcement learning for recommendation of tasks in activities of daily living in smart homes, in 2018 IEEE 42nd Annual Computer Software and Applications Conference (COMPSAC), vol. 2 ( IEEE, Piscataway, 2018), pp. 317–322
C. Palmisano, A. Tuzhilin, M. Gorgoglione, Using context to improve predictive modeling of customers in personalization applications. IEEE Trans. Knowl. Data Eng. 20(11), 1535–1549 (2008)
U. Panniello, A. Tuzhilin, M. Gorgoglione, C. Palmisano, A. Pedone, Experimental comparison of pre-vs. post-filtering approaches in context-aware recommender systems, in Proceedings of the 3rd ACM conference on Recommender Systems (ACM, New York, 2009), pp. 265–268
U. Panniello, M. Gorgoglione, A. Tuzhilin, In carss we trust: How context-aware recommendations affect customers’ trust and other business performance measures of recommender systems. Inf. Syst. Res. 27(1), 182–196 (2016)
U. Panniello, A. Tuzhilin, M. Gorgoglione, Comparing context-aware recommender systems in terms of accuracy and diversity. User Model. User-Adapt. Interact. 24(1–2), 35–65 (2014)
H.-S. Park, J.-O. Yoo, S.-B. Cho, A context-aware music recommendation system using fuzzy bayesian networks with utility theory, in Proceedings of the Third International Conference on Fuzzy Systems and Knowledge Discovery, FSKD’06 (Springer, Berlin, 2006), pp. 970–979
M.-H. Park, J.-H. Hong, S.-B. Cho, Location-based recommendation system using bayesian user’s preference model in mobile devices, in Proceedings of the 4th International Conference on Ubiquitous Intelligence and Computing, UIC’07 (Springer, Berlin, 2007), pp. 1130–1139
D. Pathak, P. Krahenbuhl, J. Donahue, T. Darrell, A.A. Efros, Context encoders: feature learning by inpainting, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2016), pp. 2536–2544
D.M. Pennock, E. Horvitz, Collaborative filtering by personality diagnosis: a hybrid memory-and model-based approach, in IJCAI’99 Workshop: Machine Learning for Information Filtering (1999)
M. Quadrana, P. Cremonesi, D. Jannach, Sequence-aware recommender systems. ACM Comput. Surv. 51(4), 1–36 (2018)
S. Reddy, J. Mascia, Lifetrak: music in tune with your life, in Proceedings of the 1st ACM International Workshop on Human-centered Multimedia, HCM ’06 (ACM, New York, 2006), pp. 25–34
A. Rettinger, H. Wermser, Y. Huang, V. Tresp, Context-aware tensor decomposition for relation prediction in social networks. Soc. Netw. Anal. Min. 2(4), 373–385 (2012)
F. Ricci, Q.N. Nguyen, Mobyrek: a conversational recommender system for on-the-move travelers, in Destination Recommendation Systems: Behavioural Foundations and Applications (2006), pp. 281–294
S. Sae-Ueng, S. Pinyapong, A. Ogino, T. Kato, Personalized shopping assistance service at ubiquitous shop space, in Proceedings of the 22nd International Conference on Advanced Information Networking and Applications - Workshops, AINAW ’08 (IEEE Computer Society, Washington, DC, 2008), pp. 838–843
B. Sarwar, G. Karypis, J. Konstan, J. Reidl, Item-based collaborative filtering recommendation algorithms, in Proceedings of the 10th International Conference on World Wide Web (ACM, New York, 2001), pp. 285–295
M. Sarwat, J. Avery, M.F. Mokbel, A recdb in action: recommendation made easy in relational databases. Proc. VLDB 6(12), 1242–1245 (2013)
M. Sarwat, J.J. Levandoski, A. Eldawy, M.F. Mokbel, Lars*: an efficient and scalable location-aware recommender system. IEEE Trans. Knowl. Data Eng. 26(6), 1384–1399 (2014)
G. Shani, A. Gunawardana, Evaluating recommendation systems, in Recommender Systems Handbook (Springer, Boston, 2011), pp. 257–297
G. Shani, D. Heckerman, R.I. Brafman, An MDP-based recommender system. J. Mach. Learn. Res. 6(Sep), 1265–1295 (2005)
P. Sitkrongwong, S. Maneeroj, A. Takasu, Latent probabilistic model for context-aware recommendations, in 2013 IEEE/WIC/ACM International Joint Conferences on Web Intelligence (WI) and Intelligent Agent Technologies (IAT), vol. 1 (IEEE, Piscataway, 2013), pp. 95–100
E. Smirnova, F. Vasile, Contextual sequence modeling for recommendation with recurrent neural networks, in Proceedings of the 2nd Workshop on Deep Learning for Recommender Systems, DLRS 2017 (Association for Computing Machinery, New York, 2017), pp. 2–9
B. Smyth, P. Cotter, Mp3 - mobile portals, profiles and personalization, in Web Dynamics (Springer, Berlin, 2004), pp. 411–433
S. Solorio-Fernández, J.A. Carrasco-Ochoa, J.F. Martínez-Trinidad, A review of unsupervised feature selection methods. Artif. Intell. Rev. 53(2), 907–948 (2020)
A. Srivihok, P. Sukonmanee, E-commerce intelligent agent: personalization travel support agent using q learning, in Proceedings of the 7th International Conference on Electronic Commerce, ICEC ’05 (Association for Computing Machinery, New York, 2005), pp. 287–292
X. Su, T.M. Khoshgoftaar, A survey of collaborative filtering techniques. Adv. Artif. Intell. 2009 (2009). https://doi.org/10.1155/2009/421425
A. Tripathi, T.S. Ashwin, R.M.R. Guddeti, EmoWare: a context-aware framework for personalized video recommendation using affective video sequences. IEEE Access 7, 51185–51200 (2019)
M. Unger, A. Bar, B. Shapira, L. Rokach, Towards latent context-aware recommendation systems. Knowl. Based Syst. 104(C), 165–178 (2016)
M. Unger, A. Tuzhilin, Hierarchical latent context representation for context-aware recommendations. IEEE Trans. Knowl. Data Eng. (2020). https://doi.org/10.1109/TKDE.2020.3022102
M. Unger, A. Tuzhilin, A. Livne, Context-aware recommendations based on deep learning frameworks. ACM Trans. Manag. Inf. Syst. 11(2), 1–15 (2020)
M. Van Setten, S. Pokraev, J. Koolwaaij, Context-aware recommendations in the mobile tourist application compass, in Adaptive Hypermedia, ed. by W. Nejdl, P. De Bra (Springer, New York, 2004), pp. 235–244
G. Vigliensoni, I. Fujinaga, The music listening histories dataset, in Proceedings of the 18th International Society for Music Information Retrieval Conference, Suzhou (2017), pp. 96–102
N.M. Villegas, C. Sánchez, J. Díaz-Cely, G. Tamura, Characterizing context-aware recommender systems: a systematic literature review. Knowl. Based Syst. 140, 173–200 (2018)
Q. Wang, H. Yin, T. Chen, Z. Huang, H. Wang, Y. Zhao, N.Q.V. Hung, Next point-of-interest recommendation on resource-constrained mobile devices, in Proceedings of The Web Conference 2020 (2020), pp. 906–916
H. Wermser, A. Rettinger, V. Tresp, Modeling and learning context-aware recommendation scenarios using tensor decomposition, in 2011 International Conference on Advances in Social Networks Analysis and Mining (IEEE, Piscataway, 2011), pp. 137–144
W. Woerndl, J. Huebner, R. Bader, D. Gallego-Vico, A model for proactivity in mobile, context-aware recommender systems, in Proceedings of the Fifth ACM Conference on Recommender Systems, RecSys ’11 (ACM, New York, 2011), pp. 273–276
W. Wu, J. Zhao, C. Zhang, F. Meng, Z. Zhang, Y. Zhang, Q. Sun, Improving performance of tensor-based context-aware recommenders using bias tensor factorization with context feature auto-encoding. Knowl. Based Syst. 128, 71–77 (2017)
M. Xie, H. Yin, H. Wang, F. Xu, W. Chen, S. Wang, Learning graph-based poi embedding for location-based recommendation, in Proceedings of the 25th ACM International on Conference on Information and Knowledge Management (2016), pp. 15–24
X. Xin, B. Chen, X. He, D. Wang, Y. Ding, J. Jose, CFM: convolutional factorization machines for context-aware recommendation, in Proceedings of the 28th International Joint Conference on Artificial Intelligence (AAAI Press, Palo Alto, 2019), pp. 3926–3932
L. Xiong, X. Chen, T.-K. Huang, J. Schneider, J.G. Carbonell, Temporal collaborative filtering with bayesian probabilistic tensor factorization, in Proceedings of the 2010 SIAM International Conference on Data Mining (SIAM, Philadelphia, 2010), pp. 211–222
H. Yin, Y. Sun, B. Cui, Z. Hu, L. Chen, LCARS: a location-content-aware recommender system, in Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2013), pp. 221–229
Z. Yu, X. Zhou, D. Zhang, C.Y. Chin, X. Wang, J. Men, Supporting context-aware media recommendations for smart phones. IEEE Pervasive Comput. 5(3), 68–75 (2006)
S. Zhang, L. Yao, A. Sun, Y. Tay, Deep learning based recommender system: a survey and new perspectives. ACM Comput. Surv. 52(1), 1–38 (2019)
G. Zheng, F. Zhang, Z. Zheng, Y. Xiang, N.J. Yuan, X. Xie, Z. Li, DRN: a deep reinforcement learning framework for news recommendation, in Proceedings of the 2018 World Wide Web Conference (2018), pp. 167–176
Y. Zheng, R. Burke, B. Mobasher, Differential context relaxation for context-aware travel recommendation, in E-Commerce and Web Technologies, ed. by C. Huemer, P. Lops. Lecture Notes in Business Information Processing, vol. 123 (Springer, Berlin 2012), pp. 88–99
Y. Zheng, B. Mobasher, R. Burke, CARSKit: a java-based context-aware recommendation engine, in 2015 IEEE International Conference on Data Mining Workshop (ICDMW) (IEEE, Piscataway, 2015), pp. 1668–1671
F. Zhou, R. Yin, K. Zhang, G. Trajcevski, T. Zhong, J. Wu, Adversarial point-of-interest recommendation, in The World Wide Web Conference (2019), pp. 3462–34618
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Science+Business Media, LLC, part of Springer Nature
About this chapter
Cite this chapter
Adomavicius, G., Bauman, K., Tuzhilin, A., Unger, M. (2022). Context-Aware Recommender Systems: From Foundations to Recent Developments . In: Ricci, F., Rokach, L., Shapira, B. (eds) Recommender Systems Handbook. Springer, New York, NY. https://doi.org/10.1007/978-1-0716-2197-4_6
Download citation
DOI: https://doi.org/10.1007/978-1-0716-2197-4_6
Published:
Publisher Name: Springer, New York, NY
Print ISBN: 978-1-0716-2196-7
Online ISBN: 978-1-0716-2197-4
eBook Packages: Computer ScienceComputer Science (R0)