[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Context-Aware Recommender Systems: From Foundations to Recent Developments

  • Chapter
  • First Online:
Recommender Systems Handbook

Abstract

The importance of contextual information has been recognized by researchers and practitioners in many disciplines, including e-commerce, personalization, information retrieval, ubiquitous and mobile computing, data mining, marketing, and management. Prior work has extensively demonstrated that relevant contextual information does matter in recommender systems and that it is important to take this information into account when providing recommendations. We discuss the general notion of context and major approaches to modeling it in recommender systems, including explicit vs. latent and static vs. dynamic approaches. We also discuss three popular algorithmic paradigms—contextual pre-filtering, post-filtering, and modeling—for incorporating contextual information into the recommendation process, and survey the recent advances in contextual modeling that include tensor factorization, deep learning, and reinforcement learning techniques. We also discuss important directions for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 109.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 131.43
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 131.43
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://link.springer.com/conference/context.

  2. 2.

    https://www.merriam-webster.com/dictionary/context.

References

  1. S. Abbar, M. Bouzeghoub, S. Lopez, Context-aware recommender systems: a service-oriented approach, in VLDB PersDB Workshop (2009)

    Google Scholar 

  2. M.H. Abdi, G. Okeyo, R.W. Mwangi, Matrix factorization techniques for context-aware collaborative filtering recommender systems: a survey (2018)

    Google Scholar 

  3. G.D. Abowd, C.G. Atkeson, J. Hong, S. Long, R. Kooper, M. Pinkerton, Cyberguide: a mobile context-aware tour guide. Wirel. Netw. 3(5), 421–433 (1997)

    Article  Google Scholar 

  4. G. Adomavicius, R. Sankaranarayanan, S. Sen, A. Tuzhilin, Incorporating contextual information in recommender systems using a multidimensional approach. ACM Trans. Inf. Syst. 23(1), 103–145 (2005)

    Article  Google Scholar 

  5. G. Adomavicius, A. Tuzhilin, Incorporating context into recommender systems using multidimensional rating estimation methods, in Proceedings of the 1st International Workshop on Web Personalization, Recommender Systems and Intelligent User Interfaces (WPRSIUI 2005) (2005)

    Google Scholar 

  6. G. Adomavicius, A. Tuzhilin, Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. IEEE Trans. Knowl. Data Eng. 17(6), 734–749 (2005)

    Article  Google Scholar 

  7. G. Adomavicius, A. Tuzhilin, R. Zheng, REQUEST: a query language for customizing recommendations. Inf. Syst. Res. 23(1), 99–117 (2011)

    Article  Google Scholar 

  8. G. Adomavicius, D. Jannach, Preface to the special issue on context-aware recommender systems. User Model. User-Adapt. Interact. 24(1–2), 1–5 (2014)

    Article  Google Scholar 

  9. G. Adomavicius, B. Mobasher, F. Ricci, A. Tuzhilin, Context-aware recommender systems. AI Mag. 32(3), 67–80 (2011)

    Google Scholar 

  10. G. Adomavicius, A. Tuzhilin, Multidimensional recommender systems: a data warehousing approach, in Electronic Commerce, ed. by L. Fiege, G. Mühl, U. Wilhelm. Lecture Notes in Computer Science, vol. 2232 (Springer, Berlin, 2001), pp. 180–192

    Google Scholar 

  11. D. Agarwal, Scaling machine learning and statistics for web applications, in Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’15 (Association for Computing Machinery, New York, 2015), p. 1621

    Google Scholar 

  12. H. Ahn, K. Kim, I. Han, Mobile advertisement recommender system using collaborative filtering: MAR-CF, in Proceedings of the 2006 Conference of the Korea Society of Management Information Systems (2006), pp. 709–715

    Google Scholar 

  13. E. Alpaydin, Introduction to Machine Learning (The MIT Press, London, 2004)

    MATH  Google Scholar 

  14. S.S. Anand, B. Mobasher, Contextual recommendation. WebMine, LNAI 4737, 142–160 (2007)

    Google Scholar 

  15. A. Ansari, S. Essegaier, R. Kohli, Internet recommendation systems. J. Market. Res. 37(3), 363–375 (2000)

    Article  Google Scholar 

  16. L. Ardissono, A. Goy, G. Petrone, M. Segnan, P. Torasso, Intrigue: personalized recommendation of tourist attractions for desktop and hand held devices. Appl. Artif. Intell. 17(8), 687–714 (2003)

    Article  Google Scholar 

  17. L. Baltrunas, X. Amatriain, Towards time-dependant recommendation based on implicit feedback, in Workshop on Context-Aware Recommender Systems (CARS 2009), New York (2009)

    Google Scholar 

  18. L. Baltrunas, F. Ricci, Context-dependent items generation in collaborative filtering, in Workshop on Context-Aware Recommender Systems (CARS 2009), New York (2009)

    Google Scholar 

  19. L. Baltrunas, Keynote: contextualization at netflix, in Workshop on Context-Aware Recommender Systems at the 13th ACM Conference on Recommender Systems, RecSys ’19 (2019)

    Google Scholar 

  20. L. Baltrunas, K. Church, A. Karatzoglou, N. Oliver, Frappe: understanding the usage and perception of mobile app recommendations in-the-wild. Preprint, arXiv:1505.03014 (2015)

    Google Scholar 

  21. L. Baltrunas, M. Kaminskas, B. Ludwig, O. Moling, F. Ricci, A. Aydin, K.-H. Lüke, R. Schwaiger, Incarmusic: context-aware music recommendations in a car, in E-Commerce and Web Technologies, ed. by C. Huemer, T. Setzer. Lecture Notes in Business Information Processing, vol. 85 (Springer, Berlin, 2011), pp. 89–100

    Google Scholar 

  22. L. Baltrunas, B. Ludwig, S. Peer, F. Ricci, Context-aware places of interest recommendations for mobile users, in Design, User Experience, and Usability. Theory, Methods, Tools and Practice, ed. by A. Marcus. Lecture Notes in Computer Science, vol. 6769 (Springer, Berlin, 2011), pp. 531–540

    Google Scholar 

  23. L. Baltrunas, B. Ludwig, S. Peer, F. Ricci, Context relevance assessment and exploitation in mobile recommender systems. Pers. Ubiquit. Comput. 16(5), 507–526 (2012)

    Article  Google Scholar 

  24. L. Baltrunas, B. Ludwig, F. Ricci, Matrix factorization techniques for context aware recommendation, in Proceedings of the Fifth ACM Conference on Recommender Systems, RecSys ’11 (ACM, New York, 2011), pp. 301–304

    Book  Google Scholar 

  25. L. Baltrunas, F. Ricci, Experimental evaluation of context-dependent collaborative filtering using item splitting. User Model. User-Adap. Inter. 24(1–2), 7–34 (2014)

    Article  Google Scholar 

  26. Z. Batmaz, A. Yurekli, A. Bilge, C. Kaleli, A review on deep learning for recommender systems: challenges and remedies. Artif. Intell. Rev. 52(1), 1–37 (2019)

    Article  Google Scholar 

  27. K. Bauman, A. Tuzhilin, Discovering contextual information from user reviews for recommendation purposes, in Proceedings of the ACM RecSys Workshop on New Trends in Content Based Recommender Systems (2014)

    Google Scholar 

  28. K. Bauman, A. Tuzhilin, Know thy context: parsing contextual information from user reviews for recommendation purposes. Inf. Syst. Res. (2021). Forthcoming

    Google Scholar 

  29. M. Bazire, P. Brézillon, Understanding context before using it, in Proceedings of the 5th International Conference on Modeling and Using Context, ed. by A. Dey et al. (Springer, Berlin, 2005)

    MATH  Google Scholar 

  30. A. Beutel, P. Covington, S. Jain, C. Xu, J. Li, V. Gatto, Ed.H. Chi, Latent cross: making use of context in recurrent recommender systems, in Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining (2018), pp. 46–54

    Google Scholar 

  31. M. Braunhofer, M. Elahi, M. Ge, F. Ricci, Context dependent preference acquisition with personality-based active learning in mobile recommender systems, in Learning and Collaboration Technologies. Technology-Rich Environments for Learning and Collaboration - First International Conference, LCT 2014, Held as Part of HCI International 2014, Heraklion, Crete, Greece, June 22–27, 2014, Proceedings, Part II, ed. by P. Zaphiris, A. Ioannou. Lecture Notes in Computer Science, vol. 8524 (Springer, Berlin, 2014), pp. 105–116

    Google Scholar 

  32. M. Braunhofer, M. Elahi, F. Ricci, STS: a context-aware mobile recommender system for places of interest, in Posters, Demos, Late-breaking Results and Workshop Proceedings of the 22nd Conference on User Modeling, Adaptation, and Personalization (UMAP2014), Aalborg, Denmark, July 7–11, 2014. CEUR Workshop Proceedings, vol. 1181, ed. by I. Cantador, M. Chi, R. Farzan, R. Jäschke (2014). CEUR-WS.org

  33. M. Braunhofer, M. Kaminskas, F. Ricci, Recommending music for places of interest in a mobile travel guide, in Proceedings of the Fifth ACM Conference on Recommender Systems, RecSys ’11 (ACM, New York, 2011), pp. 253–256

    Google Scholar 

  34. J.S. Breese, D. Heckerman, C. Kadie, Empirical analysis of predictive algorithms for collaborative filtering, in Proceedings of the Fourteenth Conference on Uncertainty in Artificial Intelligence, San Francisco, CA, vol. 461 (1998), pp. 43–52

    Google Scholar 

  35. B. Brost, R. Mehrotra, T. Jehan, The music streaming sessions dataset, in Proceedings of the 2019 Web Conference (ACM, New York, 2019)

    Google Scholar 

  36. R. Bulander, M. Decker, G. Schiefer, B. Kolmel, Comparison of different approaches for mobile advertising, in Proceedings of the Second IEEE International Workshop on Mobile Commerce and Services, WMCS ’05 (IEEE Computer Society, Washington, DC, 2005), pp. 174–182

    Google Scholar 

  37. R. Burke, Hybrid recommender systems: survey and experiments. User Model. User-Adap. Inter. 12(4), 331–370 (2002)

    Article  MATH  Google Scholar 

  38. R. Burke, Hybrid web recommender systems, in The Adaptive Web (2007), pp. 377–408

    Google Scholar 

  39. R. Cai, C. Zhang, C. Wang, L. Zhang, W.-Y. Ma, Musicsense: contextual music recommendation using emotional allocation modeling, in Proceedings of the 15th International Conference on Multimedia, MULTIMEDIA ’07 (ACM, New York, 2007), pp. 553–556

    Google Scholar 

  40. P.G. Campos, F. Díez, I. Cantador, Time-aware recommender systems: a comprehensive survey and analysis of existing evaluation protocols. User Model. User-Adapt. Interact. 24(1–2), 67–119 (2014)

    Article  Google Scholar 

  41. I. Cantador, P. Castells, Semantic contextualisation in a news recommender system, in Workshop on Context-Aware Recommender Systems (CARS 2009), New York (2009)

    Google Scholar 

  42. F. Cena, L. Console, C. Gena, A. Goy, G. Levi, S. Modeo, I. Torre, Integrating heterogeneous adaptation techniques to build a flexible and usable mobile tourist guide. AI Commun. 19(4), 369–384 (2006)

    MathSciNet  MATH  Google Scholar 

  43. S. Chatterjee, A.S. Hadi, B. Price, Regression Analysis by Example (Wiley, New York, 2000)

    MATH  Google Scholar 

  44. S. Chaudhuri, U. Dayal, An overview of data warehousing and olap technology. ACM Sigmod Rec. 26(1), 65–74 (1997)

    Article  Google Scholar 

  45. H. Chen, J. Li, Adversarial tensor factorization for context-aware recommendation, in Proceedings of the 13th ACM Conference on Recommender Systems (2019), pp. 363–367

    Google Scholar 

  46. K. Cheverst, N. Davies, K. Mitchell, A. Friday, C. Efstratiou, Developing a context-aware electronic tourist guide: some issues and experiences, in Proceedings of the SIGCHI conference on Human factors in computing systems (ACM, New York, 2000), pp. 17–24

    Google Scholar 

  47. C. Chi, R.T. Tsai, J. Lai, J.Y. Hsu, A reinforcement learning approach to emotion-based automatic playlist generation, in 2010 International Conference on Technologies and Applications of Artificial Intelligence (2010), pp. 60–65

    Google Scholar 

  48. K. Church, B. Smyth, P. Cotter, K. Bradley, Mobile information access: a study of emerging search behavior on the mobile internet. ACM Trans. Web 1(1), 4-es (2007)

    Google Scholar 

  49. V. Codina, F. Ricci, L. Ceccaroni, Exploiting the semantic similarity of contextual situations for pre-filtering recommendation, in User Modeling, Adaptation, and Personalization, ed. by S. Carberry, S. Weibelzahl, A. Micarelli, G. Semeraro. Lecture Notes in Computer Science, vol. 7899 (Springer, Berlin, 2013), pp. 165–177

    Google Scholar 

  50. F.S. da Costa, P. Dolog, Collective embedding for neural context-aware recommender systems, in Proceedings of the 13th ACM Conference on Recommender Systems, RecSys ’19 (Association for Computing Machinery, New York, 2019), pp. 201–209

    Google Scholar 

  51. B. De Carolis, I. Mazzotta, N. Novielli, V. Silvestri, Using common sense in providing personalized recommendations in the tourism domain, in Workshop on Context-Aware Recommender Systems (CARS 2009), New York (2009)

    Google Scholar 

  52. X. Ding, J. Tang, T. Liu, C. Xu, Y. Zhang, F. Shi, Q. Jiang, D. Shen, Infer implicit contexts in real-time online-to-offline recommendation, in Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD ’19 (Association for Computing Machinery, New York, 2019), pp. 2336–2346

    Google Scholar 

  53. P. Dourish, What we talk about when we talk about context. Pers. Ubiquit. Comput. 8(1), 19–30 (2004)

    Article  Google Scholar 

  54. P. Dragone, R. Mehrotra, M. Lalmas, Deriving user- and content-specific rewards for contextual bandits, in The World Wide Web Conference, WWW ’19 (Association for Computing Machinery, New York, 2019), pp. 2680–2686

    Google Scholar 

  55. B. Fling, Mobile Design and Development: Practical Concepts and Techniques for Creating Mobile Sites and Web Apps, 1st edn. (O’Reilly Media, Sebastopol, 2009)

    Google Scholar 

  56. E. Frolov, I. Oseledets, Tensor methods and recommender systems. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 7(3), e1201 (2017)

    Google Scholar 

  57. M. Gorgoglione, U. Panniello, A. Tuzhilin, Recommendation strategies in personalization applications. Inf. Manag. 56(6), 103143 (2019)

    Google Scholar 

  58. C. Hansen, C. Hansen, L. Maystre, R. Mehrotra, B. Brost, F. Tomasi, M. Lalmas, Contextual and sequential user embeddings for large-scale music recommendation, in Fourteenth ACM Conference on Recommender Systems (2020), pp. 53–62

    Google Scholar 

  59. N. Hariri, B. Mobasher, R. Burke, Context-aware music recommendation based on latent topic sequential patterns, in Proceedings of the Sixth ACM Conference on Recommender Systems, RecSys ’12 (ACM, New York, 2012), pp. 131–138

    Book  Google Scholar 

  60. N. Hariri, B. Mobasher, R. Burke, Query-driven context aware recommendation, in Proceedings of the 7th ACM Conference on Recommender Systems, RecSys ’13 (ACM, New York, 2013), pp. 9–16

    Book  Google Scholar 

  61. N. Hariri, B. Mobasher, R. Burke, Y. Zheng, Context-aware recommendation based on review mining, in Proceedings of the 9th Workshop on Intelligent Techniques for Web Personalization and Recommender Systems (ITWP 2011). Citeseer, (2011), p. 30

    Google Scholar 

  62. K. Haruna, M.A. Ismail, S. Suhendroyono, D. Damiasih, A. Pierewan, H. Chiroma, T. Herawan, Context-aware recommender system: a review of recent developmental process and future research direction. Appl. Sci. 7(12), 1211 (2017)

    Google Scholar 

  63. R. Hastings, AWS re:Invent 2012, Day 1 Keynote (2012). http://www.youtube.com/watch?v=8FJ5DBLSFe4. YouTube video; see the video at 44:40 min

  64. X. He, T.-S. Chua, Neural factorization machines for sparse predictive analytics, in Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval (2017), pp. 355–364 (2017)

    Google Scholar 

  65. X. He, L. Liao, H. Zhang, L. Nie, X. Hu, T.-S. Chua, Neural collaborative filtering, in Proceedings of the 26th International Conference on World Wide Web (2017), pp. 173–182

    Google Scholar 

  66. B. Hu, C. Shi, W.X. Zhao, P.S. Yu, Leveraging meta-path based context for top- n recommendation with a neural co-attention model, in Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD ’18 (Association for Computing Machinery, New York, 2018), pp. 1531–1540

    Google Scholar 

  67. T. Hussein, T. Linder, W. Gaulke, J. Ziegler, Context-aware recommendations on rails, in Workshop on Context-Aware Recommender Systems (CARS 2009), New York (2009)

    Google Scholar 

  68. T. Hussein, T. Linder, W. Gaulke, J. Ziegler, Hybreed: a software framework for developing context-aware hybrid recommender systems. User Model. User-Adapt. Interact. 24(1–2), 121–174 (2014)

    Article  Google Scholar 

  69. D. Jannach, K. Hegelich, A case study on the effectiveness of recommendations in the mobile internet, in Proceedings of the Third ACM Conference on Recommender Systems, RecSys ’09 (ACM, New York, 2009), pp. 205–208

    Google Scholar 

  70. T. Jiang, A. Tuzhilin, Improving personalization solutions through optimal segmentation of customer bases. IEEE Trans. Knowl. Data Eng. 21(3), 305–320 (2009)

    Article  Google Scholar 

  71. M. Kaminskas, F. Ricci, Contextual music information retrieval and recommendation: State of the art and challenges. Comput. Sci. Rev. 6(2–3), 89–119 (2012)

    Article  Google Scholar 

  72. A. Karatzoglou, X. Amatriain, L. Baltrunas, N. Oliver, Multiverse recommendation: N-dimensional tensor factorization for context-aware collaborative filtering, in Proceedings of the Fourth ACM Conference on Recommender Systems, RecSys ’10 (ACM, New York, 2010), pp. 79–86

    Book  Google Scholar 

  73. A. Karatzoglou, L. Baltrunas, K. Church, M. Böhmer, Climbing the app wall: enabling mobile app discovery through context-aware recommendations, in Proceedings of the 21st ACM International Conference on Information and Knowledge Management, CIKM ’12 (ACM, New York, 2012), pp. 2527–2530

    Google Scholar 

  74. R. Kimball, M. Ross, The Data Warehousing Toolkit (Wiley, New York, 1996)

    Google Scholar 

  75. J. Kiseleva, H.T. Lam, M. Pechenizkiy, T. Calders, Discovering temporal hidden contexts in web sessions for user trail prediction, in Proceedings of the 22Nd International Conference on World Wide Web Companion, WWW ’13 Companion, Republic and Canton of Geneva (2013), pp. 1067–1074. International World Wide Web Conferences Steering Committee

    Google Scholar 

  76. D. Koller, M. Sahami, Toward optimal feature selection, in Proceedings of the 13th International Conference on Machine Learning (Morgan Kaufmann, Burlington, 1996), pp. 284–292

    Google Scholar 

  77. Y. Koren, Factorization meets the neighborhood: a multifaceted collaborative filtering model, in Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (ACM, New York, 2008), pp. 426–434

    Google Scholar 

  78. G. Koutrika, B. Bercovitz, H. Garcia-Molina, Flexrecs: expressing and combining flexible recommendations, in Proceedings of the 35th SIGMOD international conference on Management of data (ACM, Providence, 2009), pp. 745–758

    Google Scholar 

  79. N. Lathia, The Anatomy of Mobile Location-Based Recommender Systems (Springer US, Boston, 2015), pp. 493–510

    Google Scholar 

  80. H.J. Lee, S.J. Park, Moners: a news recommender for the mobile web. Expert Syst. Appl. 32(1), 143–150 (2007)

    Article  Google Scholar 

  81. J.J. Levandoski, M.D. Ekstrand, M. Ludwig, A. Eldawy, M.F. Mokbel, J. Riedl, Recbench: benchmarks for evaluating performance of recommender system architectures. Proc. VLDB 4(11), 911–920 (2011)

    Article  Google Scholar 

  82. J.J. Levandoski, A. Eldawy, M.F. Mokbel, M.E. Khalefa, Flexible and extensible preference evaluation in database systems. ACM Trans. Database Syst. 38(3), 17 (2013)

    Google Scholar 

  83. P. Li, A. Tuzhilin, Latent multi-criteria ratings for recommendations, in Proceedings of the 13th ACM Conference on Recommender Systems, RecSys ’19 (Association for Computing Machinery, New York, 2019), pp. 428–431

    Google Scholar 

  84. E. Liebman, M. Saar-Tsechansky, P. Stone, The right music at the right time: adaptive personalized playlists based on sequence modeling. MIS Q. 43(3), 765–786 (2019)

    Article  Google Scholar 

  85. H. Liu, J. Hu, M. Rauterberg, Music playlist recommendation based on user heartbeat and music preference, in 2009 International Conference on Computer Technology and Development, vol. 1 (2009), pp. 545–549

    Google Scholar 

  86. H. Liu, H. Motoda, Feature Selection for Knowledge Discovery and Data Mining (Springer, New York, 1998)

    Book  MATH  Google Scholar 

  87. Q. Liu, S. Wu, D. Wang, Z. Li, L. Wang, Context-aware sequential recommendation, in 2016 IEEE 16th International Conference on Data Mining (ICDM) (IEEE, Piscataway, 2016), pp. 1053–1058

    Google Scholar 

  88. S. Lombardi, S.S. Anand, M. Gorgoglione, Context and customer behavior in recommendation, in Workshop on Context-Aware Recommender Systems (CARS 2009), New York (2009)

    Google Scholar 

  89. W. Luan, G. Liu, C. Jiang, L. Qi, Partition-based collaborative tensor factorization for poi recommendation. IEEE/CAA J. Automat. Sin. 4(3), 437–446 (2017)

    Article  MathSciNet  Google Scholar 

  90. T. Mahmood, F. Ricci, A. Venturini, Improving recommendation effectiveness: adapting a dialogue strategy in online travel planning. J. IT Tour. 11(4), 285–302 (2009)

    Google Scholar 

  91. J. McInerney, B. Lacker, S. Hansen, K. Higley, H. Bouchard, A. Gruson, R. Mehrotra, Explore, exploit, and explain: personalizing explainable recommendations with bandits, in Proceedings of the 12th ACM Conference on Recommender Systems, RecSys ’18 (Association for Computing Machinery, New York, 2018), pp. 31–39

    Google Scholar 

  92. L. Mei, P. Ren, Z. Chen, L. Nie, J. Ma, J.-Y. Nie, An attentive interaction network for context-aware recommendations, in Proceedings of the 27th ACM International Conference on Information and Knowledge Management, CIKM ’18 (Association for Computing Machinery, New York, 2018), pp. 157–166

    Google Scholar 

  93. H.F. Nweke, Y.W. Teh, M.A. Al-Garadi, U.R. Alo, Deep learning algorithms for human activity recognition using mobile and wearable sensor networks: State of the art and research challenges. Expert Syst. Appl. 105, 233–261 (2018)

    Article  Google Scholar 

  94. A. Odic, M. Tkalcic, J.F. Tasic, A. Kosir, Predicting and detecting the relevant contextual information in a movie-recommender system. Interact. Comput. 25(1), 74–90 (2013)

    Article  Google Scholar 

  95. S. Ojagh, M.R. Malek, S. Saeedi, S. Liang, An internet of things (IoT) approach for automatic context detection, in 2018 IEEE 9th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON) (IEEE, Piscataway, 2018), pp. 223–226

    Google Scholar 

  96. M. Okawa, T. Iwata, T. Kurashima, Y. Tanaka, H. Toda, N. Ueda, Deep mixture point processes: Spatio-temporal event prediction with rich contextual information, in Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD ’19 (Association for Computing Machinery, New York, 2019), pp. 373–383

    Google Scholar 

  97. K. Oku, S. Nakajima, J. Miyazaki, S. Uemura, Context-aware SVM for context-dependent information recommendation, in Proceedings of the 7th International Conference on Mobile Data Management (2006), p. 109

    Google Scholar 

  98. R.O. Oyeleke, C.-Y. Yu, C.K. Chang, Situ-centric reinforcement learning for recommendation of tasks in activities of daily living in smart homes, in 2018 IEEE 42nd Annual Computer Software and Applications Conference (COMPSAC), vol. 2 ( IEEE, Piscataway, 2018), pp. 317–322

    Google Scholar 

  99. C. Palmisano, A. Tuzhilin, M. Gorgoglione, Using context to improve predictive modeling of customers in personalization applications. IEEE Trans. Knowl. Data Eng. 20(11), 1535–1549 (2008)

    Article  Google Scholar 

  100. U. Panniello, A. Tuzhilin, M. Gorgoglione, C. Palmisano, A. Pedone, Experimental comparison of pre-vs. post-filtering approaches in context-aware recommender systems, in Proceedings of the 3rd ACM conference on Recommender Systems (ACM, New York, 2009), pp. 265–268

    Google Scholar 

  101. U. Panniello, M. Gorgoglione, A. Tuzhilin, In carss we trust: How context-aware recommendations affect customers’ trust and other business performance measures of recommender systems. Inf. Syst. Res. 27(1), 182–196 (2016)

    Article  Google Scholar 

  102. U. Panniello, A. Tuzhilin, M. Gorgoglione, Comparing context-aware recommender systems in terms of accuracy and diversity. User Model. User-Adapt. Interact. 24(1–2), 35–65 (2014)

    Article  Google Scholar 

  103. H.-S. Park, J.-O. Yoo, S.-B. Cho, A context-aware music recommendation system using fuzzy bayesian networks with utility theory, in Proceedings of the Third International Conference on Fuzzy Systems and Knowledge Discovery, FSKD’06 (Springer, Berlin, 2006), pp. 970–979

    Google Scholar 

  104. M.-H. Park, J.-H. Hong, S.-B. Cho, Location-based recommendation system using bayesian user’s preference model in mobile devices, in Proceedings of the 4th International Conference on Ubiquitous Intelligence and Computing, UIC’07 (Springer, Berlin, 2007), pp. 1130–1139

    Google Scholar 

  105. D. Pathak, P. Krahenbuhl, J. Donahue, T. Darrell, A.A. Efros, Context encoders: feature learning by inpainting, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2016), pp. 2536–2544

    Google Scholar 

  106. D.M. Pennock, E. Horvitz, Collaborative filtering by personality diagnosis: a hybrid memory-and model-based approach, in IJCAI’99 Workshop: Machine Learning for Information Filtering (1999)

    Google Scholar 

  107. M. Quadrana, P. Cremonesi, D. Jannach, Sequence-aware recommender systems. ACM Comput. Surv. 51(4), 1–36 (2018)

    Article  Google Scholar 

  108. S. Reddy, J. Mascia, Lifetrak: music in tune with your life, in Proceedings of the 1st ACM International Workshop on Human-centered Multimedia, HCM ’06 (ACM, New York, 2006), pp. 25–34

    Google Scholar 

  109. A. Rettinger, H. Wermser, Y. Huang, V. Tresp, Context-aware tensor decomposition for relation prediction in social networks. Soc. Netw. Anal. Min. 2(4), 373–385 (2012)

    Article  Google Scholar 

  110. F. Ricci, Q.N. Nguyen, Mobyrek: a conversational recommender system for on-the-move travelers, in Destination Recommendation Systems: Behavioural Foundations and Applications (2006), pp. 281–294

    Google Scholar 

  111. S. Sae-Ueng, S. Pinyapong, A. Ogino, T. Kato, Personalized shopping assistance service at ubiquitous shop space, in Proceedings of the 22nd International Conference on Advanced Information Networking and Applications - Workshops, AINAW ’08 (IEEE Computer Society, Washington, DC, 2008), pp. 838–843

    Google Scholar 

  112. B. Sarwar, G. Karypis, J. Konstan, J. Reidl, Item-based collaborative filtering recommendation algorithms, in Proceedings of the 10th International Conference on World Wide Web (ACM, New York, 2001), pp. 285–295

    Book  Google Scholar 

  113. M. Sarwat, J. Avery, M.F. Mokbel, A recdb in action: recommendation made easy in relational databases. Proc. VLDB 6(12), 1242–1245 (2013)

    Article  Google Scholar 

  114. M. Sarwat, J.J. Levandoski, A. Eldawy, M.F. Mokbel, Lars*: an efficient and scalable location-aware recommender system. IEEE Trans. Knowl. Data Eng. 26(6), 1384–1399 (2014)

    Article  Google Scholar 

  115. G. Shani, A. Gunawardana, Evaluating recommendation systems, in Recommender Systems Handbook (Springer, Boston, 2011), pp. 257–297

    Book  Google Scholar 

  116. G. Shani, D. Heckerman, R.I. Brafman, An MDP-based recommender system. J. Mach. Learn. Res. 6(Sep), 1265–1295 (2005)

    MathSciNet  MATH  Google Scholar 

  117. P. Sitkrongwong, S. Maneeroj, A. Takasu, Latent probabilistic model for context-aware recommendations, in 2013 IEEE/WIC/ACM International Joint Conferences on Web Intelligence (WI) and Intelligent Agent Technologies (IAT), vol. 1 (IEEE, Piscataway, 2013), pp. 95–100

    Google Scholar 

  118. E. Smirnova, F. Vasile, Contextual sequence modeling for recommendation with recurrent neural networks, in Proceedings of the 2nd Workshop on Deep Learning for Recommender Systems, DLRS 2017 (Association for Computing Machinery, New York, 2017), pp. 2–9

    Book  Google Scholar 

  119. B. Smyth, P. Cotter, Mp3 - mobile portals, profiles and personalization, in Web Dynamics (Springer, Berlin, 2004), pp. 411–433

    Google Scholar 

  120. S. Solorio-Fernández, J.A. Carrasco-Ochoa, J.F. Martínez-Trinidad, A review of unsupervised feature selection methods. Artif. Intell. Rev. 53(2), 907–948 (2020)

    Article  Google Scholar 

  121. A. Srivihok, P. Sukonmanee, E-commerce intelligent agent: personalization travel support agent using q learning, in Proceedings of the 7th International Conference on Electronic Commerce, ICEC ’05 (Association for Computing Machinery, New York, 2005), pp. 287–292

    Google Scholar 

  122. X. Su, T.M. Khoshgoftaar, A survey of collaborative filtering techniques. Adv. Artif. Intell. 2009 (2009). https://doi.org/10.1155/2009/421425

  123. A. Tripathi, T.S. Ashwin, R.M.R. Guddeti, EmoWare: a context-aware framework for personalized video recommendation using affective video sequences. IEEE Access 7, 51185–51200 (2019)

    Article  Google Scholar 

  124. M. Unger, A. Bar, B. Shapira, L. Rokach, Towards latent context-aware recommendation systems. Knowl. Based Syst. 104(C), 165–178 (2016)

    Article  Google Scholar 

  125. M. Unger, A. Tuzhilin, Hierarchical latent context representation for context-aware recommendations. IEEE Trans. Knowl. Data Eng. (2020). https://doi.org/10.1109/TKDE.2020.3022102

  126. M. Unger, A. Tuzhilin, A. Livne, Context-aware recommendations based on deep learning frameworks. ACM Trans. Manag. Inf. Syst. 11(2), 1–15 (2020)

    Article  Google Scholar 

  127. M. Van Setten, S. Pokraev, J. Koolwaaij, Context-aware recommendations in the mobile tourist application compass, in Adaptive Hypermedia, ed. by W. Nejdl, P. De Bra (Springer, New York, 2004), pp. 235–244

    Chapter  Google Scholar 

  128. G. Vigliensoni, I. Fujinaga, The music listening histories dataset, in Proceedings of the 18th International Society for Music Information Retrieval Conference, Suzhou (2017), pp. 96–102

    Google Scholar 

  129. N.M. Villegas, C. Sánchez, J. Díaz-Cely, G. Tamura, Characterizing context-aware recommender systems: a systematic literature review. Knowl. Based Syst. 140, 173–200 (2018)

    Article  Google Scholar 

  130. Q. Wang, H. Yin, T. Chen, Z. Huang, H. Wang, Y. Zhao, N.Q.V. Hung, Next point-of-interest recommendation on resource-constrained mobile devices, in Proceedings of The Web Conference 2020 (2020), pp. 906–916

    Google Scholar 

  131. H. Wermser, A. Rettinger, V. Tresp, Modeling and learning context-aware recommendation scenarios using tensor decomposition, in 2011 International Conference on Advances in Social Networks Analysis and Mining (IEEE, Piscataway, 2011), pp. 137–144

    Google Scholar 

  132. W. Woerndl, J. Huebner, R. Bader, D. Gallego-Vico, A model for proactivity in mobile, context-aware recommender systems, in Proceedings of the Fifth ACM Conference on Recommender Systems, RecSys ’11 (ACM, New York, 2011), pp. 273–276

    Book  Google Scholar 

  133. W. Wu, J. Zhao, C. Zhang, F. Meng, Z. Zhang, Y. Zhang, Q. Sun, Improving performance of tensor-based context-aware recommenders using bias tensor factorization with context feature auto-encoding. Knowl. Based Syst. 128, 71–77 (2017)

    Article  Google Scholar 

  134. M. Xie, H. Yin, H. Wang, F. Xu, W. Chen, S. Wang, Learning graph-based poi embedding for location-based recommendation, in Proceedings of the 25th ACM International on Conference on Information and Knowledge Management (2016), pp. 15–24

    Google Scholar 

  135. X. Xin, B. Chen, X. He, D. Wang, Y. Ding, J. Jose, CFM: convolutional factorization machines for context-aware recommendation, in Proceedings of the 28th International Joint Conference on Artificial Intelligence (AAAI Press, Palo Alto, 2019), pp. 3926–3932

    Google Scholar 

  136. L. Xiong, X. Chen, T.-K. Huang, J. Schneider, J.G. Carbonell, Temporal collaborative filtering with bayesian probabilistic tensor factorization, in Proceedings of the 2010 SIAM International Conference on Data Mining (SIAM, Philadelphia, 2010), pp. 211–222

    Google Scholar 

  137. H. Yin, Y. Sun, B. Cui, Z. Hu, L. Chen, LCARS: a location-content-aware recommender system, in Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2013), pp. 221–229

    Google Scholar 

  138. Z. Yu, X. Zhou, D. Zhang, C.Y. Chin, X. Wang, J. Men, Supporting context-aware media recommendations for smart phones. IEEE Pervasive Comput. 5(3), 68–75 (2006)

    Article  Google Scholar 

  139. S. Zhang, L. Yao, A. Sun, Y. Tay, Deep learning based recommender system: a survey and new perspectives. ACM Comput. Surv. 52(1), 1–38 (2019)

    Article  Google Scholar 

  140. G. Zheng, F. Zhang, Z. Zheng, Y. Xiang, N.J. Yuan, X. Xie, Z. Li, DRN: a deep reinforcement learning framework for news recommendation, in Proceedings of the 2018 World Wide Web Conference (2018), pp. 167–176

    Google Scholar 

  141. Y. Zheng, R. Burke, B. Mobasher, Differential context relaxation for context-aware travel recommendation, in E-Commerce and Web Technologies, ed. by C. Huemer, P. Lops. Lecture Notes in Business Information Processing, vol. 123 (Springer, Berlin 2012), pp. 88–99

    Google Scholar 

  142. Y. Zheng, B. Mobasher, R. Burke, CARSKit: a java-based context-aware recommendation engine, in 2015 IEEE International Conference on Data Mining Workshop (ICDMW) (IEEE, Piscataway, 2015), pp. 1668–1671

    Google Scholar 

  143. F. Zhou, R. Yin, K. Zhang, G. Trajcevski, T. Zhong, J. Wu, Adversarial point-of-interest recommendation, in The World Wide Web Conference (2019), pp. 3462–34618

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantin Bauman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Adomavicius, G., Bauman, K., Tuzhilin, A., Unger, M. (2022). Context-Aware Recommender Systems: From Foundations to Recent Developments . In: Ricci, F., Rokach, L., Shapira, B. (eds) Recommender Systems Handbook. Springer, New York, NY. https://doi.org/10.1007/978-1-0716-2197-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2197-4_6

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-0716-2196-7

  • Online ISBN: 978-1-0716-2197-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics