Abstract
A ship, as an object for course control, is characterised by a nonlinear function describing the static maneuvering characteristics. One of the methods which can be used for designing a nonlinear course controller for ships is the backstepping method. It was used here for designing the configurations of nonlinear controllers, which were then applied for ship course control. The parameters of the obtained nonlinear control structures were tuned to optimise the operation of the control system. The optimisation was performed using genetic algorithms. The quality of operation of the designed control algorithms was checked in simulation tests performed on the mathematical model of the tanker completed by steering gear.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Amerongen J. (1982). Adaptive steering of ship. A model reference approach to improved manoeuvering and economical course keeping, PhD Thesis, Delft University of Technology, Netherlands.
Astrom K.J, Wittenmark B., (1989). Adaptive Control, Addison Wesley, Reading MA.
Fossen T.I., Strand J.P. (1998). Nonlinear Ship Control (Tutorial Paper), In Proceedings of the IFAC Conference on Control Application in Marine Systems CAMS’98. Fukuoka,Japan.pp. 1-75.
Fossen, T. I. and J. P. Strand (1999). A Tutorial on Nonlinear Backstepping: Applications to Ship Control, Modelling, Identification and Control, MIC-20(2), 83-135.
Fossen T. I. (2002). Marine Control Systems. Guidance, Navigation, and Control of Ships, Rigs and Underwater Vehicles. Marine Cybernetics, Trondheim, Norway.
Goldberg D. E. (1989). Genetic algorithms in serching, optimisation and machine learning, Reading, MA: Addison Wesley.
He S., Reif K., Unbehauen R. (1998). A neural approach for control of nonlinear systems with feedback linearization, IEEE Trans. Neural Networks, 9(6), 1409–1421.
Kokotović P., Arcak M. (2001). Constructive nonlinear control: a historical perspective, Automatica 37(5), 637-662.
Krstić M., Kanellakopulos I., Kokotović P.V. (1995). Nonlinear and Adaptive Control Design, John Willey&Sons Ltd., New York.
Krstić M., Tsiotras P., (1999) Inverse Optimal Stabilization of a Rigid Spacecraft, IEEE Transactions on Automatic Control, 44(5), 1042-1049.
La Salle J., Lefschetz S. (1966). Zarys teorii stabilnosci Lapunowa i jego metody bezposredniej, BNI. Warszawa.
Michalewicz Z. (1996). Genetic algorithms + data structures = evolution programs, Berlin: Springer.
Pettersen K.Y., Nijmeijer H. (2004). Global practical stabilization and tracking for an underactuated ship - a combined averaging and backstepping approach, Modelling, Identification and Control, 20(4), 189-199.
Skjetne R., Fossen T.I., Kokotović P.V. (2005). Adaptive maneuvering, with experiments, for a model ship in a marine control laboratory, Automatica 41(2), 289–298.
Tomera M., Witkowska A., Śmierzchalski R., (2005). A Nonlinear Ship Course Controller Optimised Using a Genetic Method. Materialy VIII Krajowej Konferencji nt. Algorytmy Ewolucyjne i Optymalizacja Globalna, Korbielòw, 30 maja – 01 czerwca 2005 r., ss. 255–262.
Velagić J., Vukić Z., Omerdić E. (2003). Adaptive fuzzy ship autopilot for track-keeping, Control Engineering Practice, 11(4), 433–443.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2007 Springer Science+Business Media, LLC
About this paper
Cite this paper
Witkowska, A., Smierzchalski, R. (2007). Tuning of Parameters Backstepping Ship Course Controller by Genetic Algorithm. In: Pejaś, J., Saeed, K. (eds) Advances in Information Processing and Protection. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-73137-7_14
Download citation
DOI: https://doi.org/10.1007/978-0-387-73137-7_14
Publisher Name: Springer, Boston, MA
Print ISBN: 978-0-387-73136-0
Online ISBN: 978-0-387-73137-7
eBook Packages: Computer ScienceComputer Science (R0)