Introduction
The general linear discrete optimization problem can be posed as follows.
Linear discrete optimization. Given a set \( S\subseteq\mathbb{Z}^n \) of integer points and an integer vector \( w\in\mathbb{Z}^n \), find an \( x\in S \) maximizing the standard inner product \( wx:=\sum_{i=1}^nw_ix_i \).
The algorithmic complexity of this problem, which includes integer programming and combinatorial optimization as special cases, depends on the presentation of the set S of feasible points. In integer programming, this set is presented as the set of integer points satisfying a given system of linear inequalities, which in standard form is given by
where ℕ stands for the nonnegative integers, \( A\in\mathbb{Z}^{m\times n} \) is an \( m\times n \) integer matrix, and \( b\in\mathbb{Z}^m \) is an integer vector. The input for the problem then consists of \( A,b,w \). In combinatorial optimization, \( S\subseteq\{0,1\}^n \) is a set of \(...
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aho AV, Hopcroft JE, Ullman JD (1975) The Design and Analysis of Computer Algorithms. Addison-Wesley, Reading
Allemand K, Fukuda K, Liebling TM, Steiner E (2001) A polynomial case of unconstrained zero-one quadratic optimization. Math Prog Ser A 91:49–52
Alon N, Onn S (1999) Separable partitions. Discret Appl Math 91:39–51
Aoki S, Takemura A (2003) Minimal basis for connected Markov chain over 3 × 3 × K contingency tables with fixed two-dimensional marginals. Austr New Zeal J Stat 45:229–249
Babson E, Onn S, Thomas R (2003) The Hilbert zonotope and a polynomial time algorithm for universal Gröbner bases. Adv Appl Math 30:529–544
Balinski ML, Rispoli FJ (1993) Signature classes of transportation polytopes. Math Prog Ser A 60:127–144
Barnes ER, Hoffman AJ, Rothblum UG (1992) Optimal partitions having disjoint convex and conic hulls. Math Prog 54:69–86
Berstein Y, Onn S: Nonlinear bipartite matching. Disc Optim (to appear)
Boros E, Hammer PL (1989) On clustering problems with connected optima in Euclidean spaces. Discret Math 75:81–88
Chvátal V (1973) Edmonds polytopes and a hierarchy of combinatorial problems. Discret Math 4:305–337
Cox LH (2003) On properties of multi-dimensional statistical tables. J Stat Plan Infer 117:251–273
De Loera J, Hemmecke R, Onn S, Rothblum UG, Weismantel R: Integer convex maximization via Graver bases. E‑print: arXiv:math.CO/0609019. (submitted)
De Loera J, Hemmecke R, Onn S, Weismantel R: N-fold integer programming. Disc Optim (to appear)
De Loera J, Onn S (2004) All rational polytopes are transportation polytopes and all polytopal integer sets are contingency tables. In: Proc IPCO 10 – Symp on Integer Programming and Combinatoral Optimization, Columbia University, New York. Lec Not Comp Sci. Springer, 3064, pp 338–351
De Loera J, Onn S (2004) The complexity of three-way statistical tables. SIAM J Comput 33:819–836
De Loera J, Onn S (2006) All linear and integer programs are slim 3‑way transportation programs. SIAM J Optim 17:806–821
De Loera J, Onn S (2006) Markov bases of three-way tables are arbitrarily complicated. J Symb Comput 41:173–181
Domingo-Ferrer J, Torra V (eds) (2004) Privacy in Statistical Databases. Proc. PSD 2004 – Int Symp Privacy in Statistical Databases, Barcelona, Spain. Lec Not Comp Sci. Springer, 3050
Doyle P, Lane J, Theeuwes J, Zayatz L (eds) (2001) Confidentiality, Disclosure and Data Access: Theory and Practical Applications for Statistical Agencies. North-Holland, Amsterdam
Edelsbrunner H, O'Rourke J, Seidel R (1986) Constructing arrangements of lines and hyperplanes with applications. SIAM J Comput 15:341–363
Edelsbrunner H, Seidel R, Sharir M (1991) On the zone theorem for hyperplane arrangements. In: New Results and Trends in Computer Science. Lec Not Comp Sci. Springer, 555, pp 108–123
Edmonds J (1971) Matroids and the greedy algorithm. Math Prog 1:127–136
Edmonds J, Karp RM (1972) Theoretical improvements in algorithmic efficiency of network flow problems. J Ass Comput Mach 19:248–264
Frank A, Tardos E (1987) An application of simultaneous Diophantine approximation in combinatorial optimization. Combinatorica 7:49–65
Fukuda K, Onn S, Rosta V (2003) An adaptive algorithm for vector partitioning. J Global Optim 25:305–319
Garey MR, Johnson DS (1979) Computers and Intractability. Freeman, San Francisco
Gilmore PC, Gomory RE (1961) A linear programming approach to the cutting-stock problem. Oper Res 9:849–859
Graver JE (1975) On the foundation of linear and integer programming I. Math Prog 9:207–226
Gritzmann P, Sturmfels B (1993) Minkowski addition of polytopes: complexity and applications to Gröbner bases. SIAM J Discret Math 6:246–269
Grötschel M, Lovász L (1995) Combinatorial optimization. In: Handbook of Combinatorics. North-Holland, Amsterdam, pp 1541–1597
Grötschel M, Lovász L, Schrijver A (1993) Geometric Algorithms and Combinatorial Optimization, 2nd edn. Springer, Berlin
Grünbaum B (2003) Convex Polytopes, 2nd edn. Springer, New York
Harding EF (1967) The number of partitions of a set of n points in k dimensions induced by hyperplanes. Proc Edinburgh Math Soc 15:285–289
Hassin R, Tamir A (1989) Maximizing classes of two-parameter objectives over matroids. Math Oper Res 14:362–375
Hemmecke R (2003) On the positive sum property and the computation of Graver test sets. Math Prog 96:247–269
Hemmecke R, Hemmecke R, Malkin P (2005) 4ti2 Version 1.2–Computation of Hilbert bases, Graver bases, toric Gröbner bases, and more. http://www.4ti2.de/. Accessed Sept 2005
Hoffman AJ, Kruskal JB (1956) Integral boundary points of convex polyhedra. In: Linear inequalities and Related Systems, Ann Math Stud 38. Princeton University Press, Princeton, pp 223–246
Hoşten S, Sullivant S (2007) A finiteness theorem for Markov bases of hierarchical models. J Comb Theory Ser A 114:311–321
Hwang FK, Onn S, Rothblum UG (1999) A polynomial time algorithm for shaped partition problems. SIAM J Optim 10:70–81
Khachiyan LG (1979) A polynomial algorithm in linear programming. Sov Math Dok 20:191–194
Klee V, Kleinschmidt P (1987) The d-step conjecture and its relatives. Math Oper Res 12:718–755
Klee V, Witzgall C (1968) Facets and vertices of transportation polytopes. In: Mathematics of the Decision Sciences, Part I, Stanford, CA, 1967. AMS, Providence, pp 257–282
Kleinschmidt P, Lee CW, Schannath H (1987) Transportation problems which can be solved by the use of Hirsch-paths for the dual problems. Math Prog 37:153–168
Lenstra AK, Lenstra HW Jr, Lovász L (1982) Factoring polynomials with rational coefficients. Math Ann 261:515–534
Lovàsz L (1986) An Algorithmic Theory of Numbers, Graphs, and Convexity. CBMS-NSF Ser App Math, SIAM 50:iv+91
Onn S (2006) Convex discrete optimization. Lecture Series, Le Séminaire de Mathématiques Supérieures, Combinatorial Optimization: Methods and Applications, Université de Montréal, Canada, June 2006. http://ie.technion.ac.il/~onn/Talks/Lecture_Series.pdf and at http://www.dms.umontreal.ca/sms/ONN_Lecture_Series.pdf. Accessed 19–30 June 2006
Onn S (2003) Convex matroid optimization. SIAM J Discret Math 17:249–253
Onn S (2006) Entry uniqueness in margined tables. In: Proc. PSD 2006 – Symp. on Privacy in Statistical Databases, Rome, Italy. Lec Not Comp Sci. Springer, 4302, pp 94–101
Onn S, Rothblum UG (2004) Convex combinatorial optimization. Disc Comp Geom 32:549–566
Onn S, Schulman LJ (2001) The vector partition problem for convex objective functions. Math Oper Res 26:583–590
Onn S, Sturmfels B (1999) Cutting Corners. Adv Appl Math 23:29–48
Pistone G, Riccomagno EM, Wynn HP (2001) Algebraic Statistics. Chapman and Hall, London
Queyranne M, Spieksma FCR (1997) Approximation algorithms for multi-index transportation problems with decomposable costs. Disc Appl Math 76:239–253
Santos F, Sturmfels B (2003) Higher Lawrence configurations. J Comb Theory Ser A 103:151–164
Schrijver A (1986) Theory of Linear and Integer Programming. Wiley, New York
Schulz A, Weismantel R (2002) The complexity of generic primal algorithms for solving general integral programs. Math Oper Res 27:681–692
Schulz A, Weismantel R, Ziegler GM (1995) \( (0,1) \)-integer programming: optimization and augmentation are equivalent. In: Proc 3rd Ann Euro Symp Alg. Lec Not Comp Sci. Springer, 979, pp 473–483
Sturmfels B (1996) Gröbner Bases and Convex Polytopes. Univ Lec Ser 8. AMS, Providence
Tardos E (1986) A strongly polynomial algorithm to solve combinatorial linear programs. Oper Res 34:250–256
Vlach M (1986) Conditions for the existence of solutions of the three-dimensional planar transportation problem. Discret Appl Math 13:61–78
Wallacher C, Zimmermann U (1992) A combinatorial interior point method for network flow problems. Math Prog 56:321–335
Yemelichev VA, Kovalev MM, Kravtsov MK (1984) Polytopes, Graphs and Optimisation. Cambridge University Press, Cambridge
Yudin DB, Nemirovskii AS (1977) Informational complexity and efficient methods for the solution of convex extremal problems. Matekon 13:25–45
Zaslavsky T (1975) Facing up to arrangements: face count formulas for partitions of space by hyperplanes. Memoirs Amer Math Soc 154:vii+102
Ziegler GM (1995) Lectures on Polytopes. Springer, New York
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer-Verlag
About this entry
Cite this entry
Onn, S. (2008). Convex Discrete Optimization . In: Floudas, C., Pardalos, P. (eds) Encyclopedia of Optimization. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-74759-0_94
Download citation
DOI: https://doi.org/10.1007/978-0-387-74759-0_94
Publisher Name: Springer, Boston, MA
Print ISBN: 978-0-387-74758-3
Online ISBN: 978-0-387-74759-0
eBook Packages: Mathematics and StatisticsReference Module Computer Science and Engineering