Abstract
One of the main challenges to a broader use of association rules data mining systems is their usability. In this paper we propose the End User Development Conceptual Model aimed at enabling the user to customize the interface of rule mining systems and create domain and problem specific queries. To do so, the user must be an expert user, both in the domain and system use (which usually requires knowledge of data mining technical concepts). The goal of the expert user is to create an abstract interface level that will allow a domain expert, with no knowledge of data mining, to use the system in specific problem situations. Thus, expert users can be perceived as co-designers of the system. An initial assessment of the model’s usefulness and implementation feasibility was made.
Chapter PDF
Similar content being viewed by others
References
Agrawal, R., and Srikant, R. Fast Algorithms for Mining Association Rules. In Proc. of the 20th Int’l Conference on Very Large Databases, Santiago, Chile, September (1994).
Albergaria, E., Prates, R., Almir, F., Rocha, L. and Meira Jr., W. Characterizing interaction challenges in data mining systems. Procs of IHC, 40-49, (2006) (In Portuguese).
Carroll, J. M. Making Use: Scenario-Based Design of HCI. MIT Press (2000).
de Souza, C. S. The semiotic engineering of HCI. MIT Press, Cambridge (2005).
de Souza, C. , Barbosa, S. A semiotic framing for end-user development. In: Lieberman; H., Paternò, F.; Wulf, V.. (Org.). End User Development. Springer, 401-426 (2006).
Domingues, M. and Rezende, S. Using taxonomies to facilitate the analysis of the association rules. Procs of the 2nd Int’l Workshop on Knowledge Discovery and Ontologies, 59-66 (2005).
Fischer, G., Giaccardi, E., Ye, Y., Sutcliffe, A. G., and Mehandjiev, N. Meta-Design: A Manifesto for End-User Development. Communications of the ACM, 47, 9, 33-37 (2004).
Fischer, G. Meta-Design: Expanding Boundaries and Redistributing Control in Design. Proceedings of the Interact’2007 Conference, Rio de Janeiro, Brazil, September, (2007).
Goldschmidt, R.; Passos, E.; Vellasco, M. An Action Plan Definition Assistant in KDD Process. Procs of the 2nd International Conf. on Artificial Intelligence and Applications, (2002).
Goldschmidt, R. Data Mining – A Practical Guide. Editora Campos (2005). (In Portuguese)
Guedes Neto, D., Meira Jr., W., Ferreira, R. A. C. Anteater: A Service-Oriented Architecture for High-Performance Data Mining. IEEE Internet computing, 10, 36-43 (2006).
Han, J., Y. Fu, W. Wang, J. Chiang, W. Gong, K. Koperski, D. Li, Y. Lu, A. Rajan, N. Stefanovic, B. Xia, and O. R. Za\"{\i}ane. DBMiner: a system for mining knowledge in large relational databases. In Proceedings of KDD., 250-255 (1996).
Han, J., Cheng, H., Xin, D., and Yan, X. Frequent pattern mining: current status and future directions. Data Min. Knowl. Discov. 15, 1, 55-86 (2007).
Hipp, U Güntzer, G Nakhaeizadeh.. Algorithms for Association Rule Mining - A General Survey and Comparison. ACM SIGKDD Explorations Newsletter, 58-64 (2000).
Hofmann, H. Siebes, A. and Wilhelm, A. Visualizing Association Rules with Interactive Mosaic Plots, Proc. Int’l Conf. Knowledge Discovery and Data Mining (KDD). 227-235, (2000).
Kirkland, J.D.; Senator, T. E; Hayden, J. J.; Dybala, T.; Goldberg H. G.; Shyr, P.. “The NASD Regulation Advanced-Detection System,” AI Magazine, 20, 1, pp. 55–67 (1999).
Kriegel, H., Borgwardt, K. M., Kröger, P., Pryakhin, A., Schubert, M., and Zimek, A. Future trends in data mining. Data Min. Knowl. Discov. 15, 1 (Aug.), 87-97 (2007).
Mei, Q.,Xin, D., Cheng, H. , Han, J., Zhai, C. Generating Semantic Annotations for Frequent Patterns with Context Analysis. Proceedings of KDD, 337-346 (2006).
Piatetsky-Shapiro, G. The data-mining industry coming of age. IEEE IS, 14, 6, 32–34 (1999).
Rainsford, C. and Roddick, J. Visualization of temporal interval association rules. In Procs. of the 2nd. Int’l Conf. on Intelligent Data Engineering and Automated Learning, 91-96 (2000).
Srikant, R. and Agrawal, R,. Mining generalized association rules. Future Generation Computer Systems 13 (2–3), 161–180 (1997).
Tamandua (Anteater) http://tamandua.speed.dcc.ufmg.br. Accessed in February (2008).
Webb, G. I. Editorial. Data Min. Knowl. Discov. 15, 1 (Aug. 2007), 1-2.
Weka,.http://www.cs.waikato.ac.nz/ml/weka/. Accessed in February (2008).
Wong, P. C., Whitney, P. and Thomas, J.. Visualizing Association Rules for Text Mining. In Procs of IEEE Information Visualization, IEEE CS Press (1999).
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 IFIP International Federation for Information Processing
About this paper
Cite this paper
Albergaria, E., Mourão, F., Prates, R., Meira, W. (2008). An End User Development Model to Augment Usability of Rule Association Mining Systems. In: Forbrig, P., Paternò, F., Pejtersen, A.M. (eds) Human-Computer Interaction Symposium. HCIS 2008. IFIP International Federation for Information Processing, vol 272. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-09678-0_15
Download citation
DOI: https://doi.org/10.1007/978-0-387-09678-0_15
Publisher Name: Springer, Boston, MA
Print ISBN: 978-0-387-09677-3
Online ISBN: 978-0-387-09678-0
eBook Packages: Computer ScienceComputer Science (R0)